AI Article Synopsis

Article Abstract

Mid-infrared (MIR) light-emitting devices play a key role in optical communications, thermal imaging, and material analysis applications. Two-dimensional (2D) materials offer a promising direction for next-generation MIR devices owing to their exotic optical properties, as well as the ultimate thickness limit. More importantly, van der Waals heterostructures-combining the best of various 2D materials at an artificial atomic level-provide many new possibilities for constructing MIR light-emitting devices of large tuneability and high integration. Here, we introduce a simple but novel van der Waals heterostructure for MIR light-emission applications built from thin-film BP and transition metal dichalcogenides (TMDCs), in which BP acts as an MIR light-emission layer. For BP-WSe heterostructures, an enhancement of ~200% in the photoluminescence intensities in the MIR region is observed, demonstrating highly efficient energy transfer in this heterostructure with type-I band alignment. For BP-MoS heterostructures, a room temperature MIR light-emitting diode (LED) is enabled through the formation of a vertical PN heterojunction at the interface. Our work reveals that the BP-TMDC heterostructure with efficient light emission in the MIR range, either optically or electrically activated, provides a promising platform for infrared light property studies and applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7329856PMC
http://dx.doi.org/10.1038/s41377-020-00356-xDOI Listing

Publication Analysis

Top Keywords

van der
12
der waals
12
mir light-emitting
12
light-emission applications
8
mir
8
light-emitting devices
8
mir light-emission
8
black phosphorus-based
4
phosphorus-based van
4
waals heterostructures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!