A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning approach to predict medication overuse in migraine patients. | LitMetric

Machine learning approach to predict medication overuse in migraine patients.

Comput Struct Biotechnol J

BioBIM (InterInstitutional Multidisciplinary Biobank), IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.

Published: June 2020

Machine learning (ML) is largely used to develop automatic predictors in migraine classification but automatic predictors for medication overuse (MO) in migraine are still in their infancy. Thus, to understand the benefits of ML in MO prediction, we explored an automated predictor to estimate MO risk in migraine. To achieve this objective, a study was designed to analyze the performance of a customized ML-based decision support system that combines support vector machines and Random Optimization (RO-MO). We used RO-MO to extract prognostic information from demographic, clinical and biochemical data. Using a dataset of 777 consecutive migraine patients we derived a set of predictors with discriminatory power for MO higher than that observed for baseline SVM. The best four were incorporated into the final RO-MO decision support system and risk evaluation on a five-level stratification was performed. ROC analysis resulted in a c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87, respectively, and an accuracy of 0.87 when MO was predicted by at least three RO-MO models. Logistic regression analysis confirmed that the derived RO-MO system could effectively predict MO with ORs of 5.7 and 21.0 for patients classified as probably (3 predictors positive), or definitely at risk of MO (4 predictors positive), respectively. In conclusion, a combination of ML and RO - taking into consideration clinical/biochemical features, drug exposure and lifestyle - might represent a valuable approach to MO prediction in migraine and holds the potential for improving model precision through weighting the relative importance of attributes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327028PMC
http://dx.doi.org/10.1016/j.csbj.2020.06.006DOI Listing

Publication Analysis

Top Keywords

machine learning
8
medication overuse
8
overuse migraine
8
migraine patients
8
automatic predictors
8
decision support
8
support system
8
predictors positive
8
migraine
6
predictors
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!