Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Indoximod has shaped our understanding of the biology of IDO1 in the control of immune responses, though its mechanism of action has been poorly understood. Previous studies demonstrated that indoximod creates a tryptophan (Trp) sufficiency signal that reactivates mTOR in the context of low Trp concentrations, thus opposing the effects caused by IDO1. Here we extend the understanding of indoximod's mechanism of action by showing that it has pleiotropic effects on immune regulation. Indoximod can have a direct effect on T cells, increasing their proliferation as a result of mTOR reactivation. Further, indoximod modulates the differentiation of CD4 T cells via the aryl hydrocarbon receptor (AhR), which controls transcription of several genes in response to different ligands including kynurenine (Kyn). Indoximod increases the transcription of while inhibiting transcription of , thus favoring differentiation to IL-17-producing helper T cells and inhibiting the differentiation of regulatory T cells. These indoximod-driven effects on CD8 and CD4 T cells were independent from the activity of IDO/TDO and from the presence of exogenous Kyn, though they do oppose the effects of Kyn produced by these Trp catabolizing enzymes. Indoximod can also downregulate expression of IDO protein in murine lymph node dendritic cells and in human monocyte-derived dendritic cells via a mechanism that involves signaling through the AhR. Together, these data improve the understanding of how indoximod influences the effects of IDO, beyond and distinct from direct enzymatic inhibition of the enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321702 | PMC |
http://dx.doi.org/10.18632/oncotarget.27646 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!