AI Article Synopsis

  • Nrf2 is a transcription factor that helps cells protect themselves from oxidative stress and is regulated by Keap1, which can be mutated in cancer, leading to continuous Nrf2 activation and tumor growth.
  • Researchers explored the effects of targeting Nrf2 activation in the tumor microenvironment using a mouse model and found that activating Nrf2 in healthy surrounding cells actually helped reduce tumor progression.
  • This study highlights the potential for new cancer treatments that focus on promoting Nrf2 activation in immune cells, which may help suppress the growth of Nrf2-activated tumors.

Article Abstract

The transcription factor Nrf2 activates transcription of cytoprotective genes during oxidative and electrophilic insults. Nrf2 activity is regulated by Keap1 in a stress-dependent manner in normal cells, and somatic loss-of-function mutations of Keap1 are known to induce constitutive Nrf2 activation, especially in lung adenocarcinomas, conferring survival and proliferative benefits to tumors. Therefore, several therapeutic strategies that aim to inhibit Nrf2 in tumors have been developed for the treatment of Nrf2-activated cancers. Here we addressed whether targeting Nrf2 activation in the microenvironment can suppress the progression of Nrf2-activated tumors. We combined two types of Keap1-flox mice expressing variable levels of Keap1 with a Kras-driven adenocarcinoma model to generate Keap1-deficient lung tumors surrounded by normal or Keap1-knockdown host cells. In this model system, activation of Nrf2 in the microenvironment prolonged the survival of Nrf2-activated tumor-bearing mice. The Nrf2-activated microenvironment suppressed tumor burden; in particular, preinvasive lesion formation was significantly suppressed. Notably, loss of Nrf2 in bone marrow-derived cells in Nrf2-activated host cells appeared to counteract the suppression of Nrf2-activated cancer progression. Thus, these results demonstrate that microenvironmental Nrf2 activation suppresses the progression of malignant Nrf2-activated tumors and that Nrf2 activation in immune cells at least partially contributes to these suppressive effects. SIGNIFICANCE: This study clarifies the importance of Nrf2 activation in the tumor microenvironment and in the host for the suppression of malignant Nrf2-activated cancers and proposes new cancer therapies utilizing inducers of Nrf2.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-2888DOI Listing

Publication Analysis

Top Keywords

nrf2 activation
20
nrf2
12
nrf2-activated
9
activation nrf2
8
progression nrf2-activated
8
nrf2-activated cancers
8
nrf2-activated tumors
8
host cells
8
malignant nrf2-activated
8
tumors
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!