Background: Brain sexual differentiation is a process that results from the effects of sex steroids on the developing brain. Evidence shows that epigenetics plays a main role in the formation of enduring brain sex differences and that the estrogen receptor α (ESR1) is one of the implicated genes.
Aim: To analyze whether the methylation of region III (RIII) of the ESR1 promoter is involved in the biological basis of gender dysphoria.
Methods: We carried out a prospective study of the CpG methylation profile of RIII (-1,188 to -790 bp) of the ESR1 promoter using bisulfite genomic sequencing in a cisgender population (10 men and 10 women) and in a transgender population (10 trans men and 10 trans women), before and after 6 months of gender-affirming hormone treatment. Cisgender and transgender populations were matched by geographical origin, age, and sex. DNAs were treated with bisulfite, amplified, cloned, and sequenced. At least 10 clones per individual from independent polymerase chain reactions were sequenced. The analysis of 671 bisulfite sequences was carried out with the QUMA (QUantification tool for Methylation Analysis) program.
Outcomes: The main outcome of this study was RIII analysis using bisulfite genomic sequencing.
Results: We found sex differences in RIII methylation profiles in cisgender and transgender populations. Cismen showed a higher methylation degree than ciswomen at CpG sites 297, 306, 509, and at the total fragment (P ≤ .003, P ≤ .026, P ≤ .001, P ≤ .006). Transmen showed a lower methylation level than trans women at sites 306, 372, and at the total fragment (P ≤ .0001, P ≤ .018, P ≤ .0107). Before the hormone treatment, transmen showed the lowest methylation level with respect to cisgender and transgender populations, whereas transwomen reached an intermediate methylation level between both the cisgender groups. After the hormone treatment, transmen showed a statistically significant methylation increase, whereas transwomen showed a non-significant methylation decrease. After the hormone treatment, the RIII methylation differences between transmen and transwomen disappeared, and both transgender groups reached an intermediate methylation level between both the cisgender groups.
Clinical Implications: Clinical implications in the hormonal treatment of trans people.
Strengths & Limitations: Increasing the number of regions analyzed in the ESR1 promoter and increasing the number of tissues analyzed would provide a better understanding of the variation in the methylation pattern.
Conclusions: Our data showed sex differences in RIII methylation patterns in cisgender and transgender populations before the hormone treatment. Furthermore, before the hormone treatment, transwomen and transmen showed a characteristic methylation profile, different from both the cisgender groups. But the hormonal treatment modified RIII methylation in trans populations, which are now more similar to their gender. Therefore, our results suggest that the methylation of RIII could be involved in gender dysphoria. Fernández R, Ramírez K, Gómez-Gil E, et al. Gender-Affirming Hormone Therapy Modifies the CpG Methylation Pattern of the ESR1 Gene Promoter After Six Months of Treatment in Transmen. J Sex Med 2020;17:1795-1806.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsxm.2020.05.027 | DOI Listing |
J Mater Chem B
December 2024
Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
Endometriosis and adenomyosis are debilitating gynecological conditions that severely affect the quality of life of women. Traditional diagnostic and treatment methods, including laparoscopic surgery and hormonal therapy, face significant limitations such as incomplete lesion detection, high recurrence rates, and adverse side effects. Emerging bioengineering technologies offer promising solutions for precise diagnosis and therapy of these diseases.
View Article and Find Full Text PDFMol Med Rep
March 2025
Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China.
Endometriosis (EM) is a chronic inflammatory disease that is one of the most common causes of gynecological systemic lesions in women before menopause. The most representative histological feature of EM is that the endometrium appears outside of the uterine cavity, often in the ovary. Although it is generally accepted that the epithelial and stromal cells of the ectopic endometrium are not malignant, they still have numerous similarities to malignant tumors, including considerable changes to the immune microenvironment (immune monitoring disorder), the creation of a specific hormone environment, high levels of oxidative stress, chronic inflammation and abnormal immune cell regulation.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.
Background: Alfalfa, scientifically identified as , is repeatedly referred to as the "king of forages". Because of its tight relationship to winter hardiness, the alfalfa's root crown plays a significant role as a storage organ over the winter. At present, it is still unknown what molecular process makes the alfalfa root crown resistant to cold.
View Article and Find Full Text PDFFront Reprod Health
December 2024
Department of Obstetrics and Gynaecology, Fribourg University Hospital, Fribourg, Switzerland.
Adenomyosis is a commonly encountered pathology in women of reproductive age and frequently coexists with infertility. The effect of adenomyosis on fertility, particularly on fertilisation and intracytoplasmic sperm injection outcomes, is not well understood. Various pretreatment modalities have been used to improve pregnancy rates and live birth outcomes; however, because of a lack of high-quality evidence, there is no clear consensus on the best pretreatment option.
View Article and Find Full Text PDFMechanobiol Med
December 2024
Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA.
Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using or strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!