is currently considered as an immediate threat to human health due to its various multidrug efflux pumps. Microbially synthesized silver nanoparticles (AgNPs) are an attractive and eco-friendly approach to prevent antibiotic resistance in bacteria. In the present study, we compared the inhibitory effect of both commercial and green AgNPs by on OxqAB efflux pump genes in ciprofloxacin-resistant strains of . AgNPs were characterized by ultraviolet-visible spectrophotometer, Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential, transmission electron microscopy, and scanning electron microscopy. Antibiogram was used to identify resistant isolates and the effect of the biosynthesized AgNPs against OxqAB efflux pump strains was assessed by the minimum inhibitory concentration (MIC) method. The expression levels of genes were evaluated using real-time polymerase chain reaction (PCR) followed by exposure to subMICs of the AgNPs. PCR results showed that 25 strains had OxqAB efflux pump and the MIC method indicated that AgNPs had an inhibitory effect on all resistant strains with OxqAB efflux pump. The efficacy of the synthetic nanoparticles was assessed by comparing the antiefflux pump activity with commercial AgNPs. In ciprofloxacin-resistant isolates, the genes expression levels reduced in the subMIC of both AgNPs, whereas biosynthesized AgNPs had greater bactericidal effects compared with the commercial AgNPs. Efflux pumps could be an attractive target for our biosynthesized AgNPs. The genes expression levels reduced in subMIC of both AgNPs, whereas biosynthesized AgNPs had greater bactericidal effects than the commercial AgNPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mdr.2019.0366 | DOI Listing |
Front Microbiol
January 2025
Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
Antibiotic-resistant Gram-negative bacteria are an increasing threat to human health. Strategies to restore antibiotic efficacy include targeting multidrug efflux pumps by competitive efflux pump inhibitors. These could be derived from natural substrates of these efflux systems.
View Article and Find Full Text PDFNPJ Antimicrob Resist
August 2024
Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.
View Article and Find Full Text PDFNPJ Antimicrob Resist
March 2024
Computational Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
Gram-negative bacteria cause the majority of critically drug-resistant infections, necessitating the rapid development of new drugs with Gram-negative activity. However, drug design is hampered by the low permeability of the Gram-negative cell envelope and the function of drug efflux pumps, which extrude foreign molecules from the cell. A better understanding of the molecular determinants of compound recognition by efflux pumps is, therefore, essential.
View Article and Find Full Text PDFChemMedChem
January 2025
University of Perugia: Universita degli Studi di Perugia, Department of Pharmaceutical Sciences, ITALY.
In this study, we analyzed publicly accessible data related to the Staphylococcus aureus NorA protein, a well-known efflux pump involved in antimicrobial resistance. Our analysis revealed several inconsistencies in data annotation, and significant issues concerning the homogeneity across datasets, which compromise the reliability of data-driven approaches aimed at identifying novel Staphylococcus aureus NorA efflux pump inhibitors (EPIs). To address these challenges, we propose a standardized pipeline for experimental procedures and data annotation, designed to enhance the consistency and quality of EPI datasets submitted to repositories, thereby increasing the utility of publicly available datasets for the discovery of potential EPIs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!