Sensitivity Enhancement of Curvature Fiber Sensor Based on Polymer-Coated Capillary Hollow-Core Fiber.

Sensors (Basel)

Electronics Department, DICIS, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Salamanca 36885, Mexico.

Published: July 2020

In this paper, we propose and experimentally demonstrate a simple technique to enhance the curvature sensitivity of a bending fiber optic sensor based on anti-resonant reflecting optical waveguide (ARROW) guidance. The sensing structure is assembled by splicing a segment of capillary hollow-core fiber (CHCF) between two single-mode fibers (SMF), and the device is set on a steel sheet for measuring different curvatures. Without any surface treatment, the ARROW sensor exhibits a curvature sensitivity of 1.6 dB/m in a curvature range from 0 to 2.14 m. By carefully coating half of the CHCF length with polydimethylsiloxane (PDMS), the curvature sensitivity of the ARROW sensor is enhanced to -5.62 dB/m, as well as an increment in the curvature range (from 0 to 2.68 m). Moreover, the covered device exhibits a low-temperature sensitivity (0.038 dB/°C), meaning that temperature fluctuations do not compromise the bending fiber optic sensor operation. The ARROW sensor fabricated with this technique has high sensitivity and a wide range for curvature measurements, with the advantage that the technique is cost-effective and easy to implement. All these features make this technique appealing for real sensing applications, such as structural health monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374301PMC
http://dx.doi.org/10.3390/s20133763DOI Listing

Publication Analysis

Top Keywords

curvature sensitivity
12
arrow sensor
12
sensor based
8
capillary hollow-core
8
hollow-core fiber
8
bending fiber
8
fiber optic
8
optic sensor
8
curvature range
8
curvature
7

Similar Publications

Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.

View Article and Find Full Text PDF

We present a high-sensitivity curvature and strain Mach-Zehnder interferometer (MZI) fiber sensor based on a configuration of no-core fiber (NCF) and four-core fiber (FCF). We used an optical fiber fusion splicer to directly splice a segment of FCF between two segments of NCF, with both the FCF and NCF made of SiO, where the FCF exhibits multi-path interference characteristics that allow for higher sensitivity. The NCF, with its self-focusing property, excites higher-order modes, which split and transmit it into the four cores of the FCF.

View Article and Find Full Text PDF

Parallel Farby-Perot Interferometers in an Etched Multicore Fiber for Vector Bending Measurements.

Micromachines (Basel)

November 2024

Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Vector bending sensors can be utilized to detect the bending curvature and direction, which is essential for various applications such as structural health monitoring, mechanical deformation measurement, and shape sensing. In this work, we demonstrate a temperature-insensitive vector bending sensor via parallel Farby-Perot interferometers (FPIs) fabricated by etching and splicing a multicore fiber (MCF). The parallel FPIs made in this simple and effective way exhibit significant interferometric visibility with a fringe contrast over 20 dB in the reflection spectra, which is 6 dB larger than the previous MCF-based FPIs.

View Article and Find Full Text PDF

Compartmental analysis of retinal vascular parameters and thickness in myopic eyes using SS-OCTA.

Front Med (Lausanne)

December 2024

Chongqing Key Laboratory of Prevention and Treatment on Major Blinding Diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Article Synopsis
  • The study examined how myopia affects the thickness and structure of retinal blood vessels using advanced imaging technology in 100 participants.
  • The findings revealed that individuals with high myopia had significantly lower vessel density and thinner retinal layers, particularly noticeable in the superficial and nerve fiber layers.
  • There was a noted correlation between certain ocular parameters, such as axial length to curvature radius ratio, and retinal thickness in non-high myopic eyes, while high myopic eyes showed less correlation in these aspects.
View Article and Find Full Text PDF

Floods are one of the most catastrophic and widespread disasters that cause loss of lives, infrastructure, livelihoods, and people. Therefore, the identification and mapping of flood-prone areas is crucial for flood disaster management. The main objective of this study is to identify and map the potential flood areas of the Wardha Basin using frequency ratio (FR) and statistical index (SI) models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!