Sepsis-induced coagulopathy has poor prognosis; however, there is no established tool for predicting it. We aimed to create predictive models for coagulopathy progression using machine-learning techniques to evaluate predictive accuracies of machine-learning and conventional techniques. A post-hoc subgroup analysis was conducted based on the Japan Septic Disseminated Intravascular Coagulation retrospective study. We used the International Society on Thrombosis and Haemostasis disseminated intravascular coagulation (DIC) score to calculate the ΔDIC score as ((DIC score on Day 3) - (DIC score on Day 1)). The primary outcome was to determine whether the predictive accuracy of ΔDIC was more than 0. The secondary outcome was the actual predictive accuracy of ΔDIC (predicted ΔDIC-real ΔDIC). We used the machine-learning methods, such as random forests (RF), support vector machines (SVM), and neural networks (NN); their predictive accuracies were compared with those of conventional methods. In total, 1017 patients were included. Regarding DIC progression, predictive accuracy of the multiple linear regression, RF, SVM, and NN models was 63.7%, 67.0%, 64.4%, and 59.8%, respectively. The difference between predicted ΔDIC and real ΔDIC was 2.05, 1.54, 2.24, and 1.77 for the multiple linear regression, RF, SVM, and NN models, respectively. RF had the highest predictive accuracy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408668 | PMC |
http://dx.doi.org/10.3390/jcm9072113 | DOI Listing |
J Med Internet Res
January 2025
Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
Background: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation.
View Article and Find Full Text PDFJ Urol
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO.
Purpose: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) prior to biopsy and applied artificial intelligence models to these DBSI metrics to predict csPCa.
Materials And Methods: Between February 2020 and March 2024, 241 patients underwent prostate MRI that included conventional and DBSI-specific sequences prior to prostate biopsy.
Proc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Institute for Mind and Biology, University of Chicago.
Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!