Photocatalytic oxidation of propane using hydrothermally synthesized TiO samples with similar primary crystal size containing different ratios of anatase, brookite and rutile phases has been studied by measuring light-induced propane conversion and in situ DRIFTS (diffuse reflectance Fourier transform infrared spectroscopy). Propane was found to adsorb on the photocatalysts, both in the absence and presence of light. The extent of adsorption depends on the phase composition of synthesized titania powders and, in general, it decreases with increasing rutile and brookite content. Still, the intrinsic activity for photocatalytic decomposition of propane is higher for photocatalysts with lower ability for propane adsorption, suggesting this is not the rate-limiting step. In situ DRIFTS analysis shows that bands related to adsorbed acetone, formate and bicarbonate species appear on the surface of the photocatalysts during illumination. Correlation of propane conversion and infrared (IR) data shows that the presence of formate and bicarbonate species, in excess with respect to acetone, is composition dependent, and results in relatively low activity of the respective TiO. This study highlights the need for precise control of the phase composition to optimize rates in the photocatalytic oxidation of propane and a high rutile content seems to be favorable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407931 | PMC |
http://dx.doi.org/10.3390/nano10071314 | DOI Listing |
Inorg Chem
January 2025
Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
Developing new photocatalysts for the selective oxidation of thioethers to high-value-added sulfoxides under low-oxygen mild conditions is a promising but challenging strategy. Here, a new polyoxometalate-based metal-organic framework (POMOF), , was successfully synthesized, wherein continuous π···π stacking interactions and direct coordination bonds not only strengthen the framework's stability but also accelerate electron transfer. A series of experiments and theoretical studies, including control experiments, kinetic studies, electrochemical spectroscopic analyses, and electron paramagnetic resonance, revealed the synergistic catalytic effect among Co(II) metal centers, BWO, and the photosensitizer TPT.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
Atomically precise nanoclusters (NCs) can serve as an excellent platform for a comprehensive understanding of structure-property relationships. Herein, three structurally similar Cu NCs (Cu-1, Cu-2 and Cu-3) have been prepared for the photocatalytic phenylacetylene self-coupling reaction. It was found that Cu-1 NC achieved the highest turnover number (TON) of 524.
View Article and Find Full Text PDFSmall Methods
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China.
Photocatalytic transfer hydrogenation of biomass-derived aldehydes to alcohols often results in unwanted coupling co-products. Herein, an ultraselective hydrogen transfer system enabled by in situ oxidative C─C bond cleavage over a Janus single-atom palladium on titanium dioxide (0.5Pd/TiO) photocatalyst is presented.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.
Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry, Nazarbayev University, Astana, 010000, Kazakhstan.
The rapid growth in the global population has led to increased environmental pollution and energy demands, exacerbating the issue of environmental contamination. This contamination is significantly impacted by various types of pesticides found in water sources, which pose serious health risks to humans, animals, and aquatic ecosystems. In response, extensive research into water treatment technologies has been conducted, focusing on efficient methods to remove these pollutants, with advanced oxidation processes and the utilization of tungsten trioxide (WO) as a photocatalyst showing promising results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!