Omega-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA), particularly docosahexaenoic acids (22:6n-3, DHA), have positive effects on multiple biologic and pathologic processes. Fish are the major dietary source of n-3 LC-PUFA for humans. Growing evidence supports acyl-coenzyme A (acyl-CoA) synthetase 6 () being involved in cellular DHA uptake and lipogenesis in mammals, while its molecular function and regulatory mechanism remain unknown in fish. The present study focused on investigating the molecular characterization and transcription regulation of the gene in the freshwater teleost common carp (). First, the full length of cDNA contained a coding region of 2148 bp for 715 amino acids, which possessed all characteristic features of the acyl-CoA synthetase (ACSL) family. Its mRNA expression was the highest in the brain, followed by in the heart, liver, kidney, muscle, and eyes, but little expression was detected in the ovary and gills. Additionally, a candidate promoter region of 2058 bp was cloned, and the sequence from -758 bp to -198 bp was determined as core a promoter by equal progressive deletion and electrophoretic mobility shift assay. The binding sites for important transcription factors (TFs), including stimulatory protein 1 (SP1), CCAAT enhancer-binding protein (C/EBPα), sterol-regulatory element binding protein 1c (SREBP1c), peroxisome proliferator activated receptor α (PPARα), and PPARγ were identified in the core promoter by site-directed mutation and functional assays. Furthermore, the intraperitoneal injection of PPARγ agonists (balaglitazone) increased the expression of mRNA, coupling with an increased proportion of DHA in the muscle, while opposite results were obtained in the injection of the SREBP1c antagonist (betulin). However, the expression of and DHA content in muscle were largely unchanged by PPARα agonist (fenofibrate) treatment. These results indicated that may play an important role for the muscular DHA uptake and deposition in common carp, and PPARγ and SREBP-1c are the potential TFs involved in the transcriptional regulation of gene. To our knowledge, this is the first report of the characterization of gene and its promoter in teleosts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370118PMC
http://dx.doi.org/10.3390/ijms21134736DOI Listing

Publication Analysis

Top Keywords

acyl-coa synthetase
12
common carp
12
gene promoter
8
n-3 lc-pufa
8
dha uptake
8
regulation gene
8
core promoter
8
expression
5
promoter
5
dha
5

Similar Publications

Oligodendrocytes are the myelinating cells of the central nervous system. Regulation of the early stages of oligodendrocyte development is critical to the function of the cell. Specifically, myelin sheath formation is an energetically demanding event that requires precision, as alterations may lead to dysmyelination.

View Article and Find Full Text PDF

[Roles of ferroptosis in the development of diabetic nephropathy].

Zhejiang Da Xue Xue Bao Yi Xue Ban

December 2024

Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.

Article Synopsis
  • Diabetic nephropathy is a serious complication of diabetes that can lead to death, and ferroptosis (an iron-dependent cell death process) plays a role in its progression.
  • AMPK signaling can slow down diabetic nephropathy but excessive activation may cause autophagic death, while Nrf2 and HO-1 pathways can protect against ferroptosis; however, these pathways have complex effects.
  • Other factors like TGF-β1 and specific exosome-related signals also contribute to the development of diabetic nephropathy, suggesting potential new therapeutic targets to prevent or treat this condition.
View Article and Find Full Text PDF

SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma.

Int J Oncol

February 2025

Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China.

Plexiform neurofibromas (PNFs) are benign tumors that affect 20‑50% of patients with type I neurofibromatosis (NF1). PNF carries a risk of malignancy. There is no effective cure for PNF.

View Article and Find Full Text PDF

Ferroptosis and sonodynamic therapy (SDT) are both promising therapeutic modalities, but their clinical application remains challenging due to the hypoxic tumor microenvironment and limited supply of polyunsaturated fatty acids. Developing an agent with oxygen-enhanced SDT and increased ferroptosis sensitivity is crucial for advancing tumor therapy. In this study, catalase (Cat) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) highly expressed 4T1 cells were constructed lentivirus transfection.

View Article and Find Full Text PDF

CD36-mediated uptake of oxidized LDL induces double-negative regulatory T cell ferroptosis in metabolic dysfunction-associated steatotic liver disease.

Metabolism

December 2024

Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China. Electronic address:

Background: Metabolic alterations have been shown to instigate liver inflammation in metabolic dysfunction-associated steatotic liver disease (MASLD), but the underlying mechanism is not fully elucidated. During MASLD progression, intrahepatic CD3TCRαβCD4CD8 double negative T regulatory cells (DNT) decrease cell survival and immunosuppressive function, leading to aggravated liver inflammation. In this study, we aim to reveal the underlying mechanisms that cause changes in DNT during MASLD progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!