Cell migration plays fundamental roles in the development and maintenance of organisms such as wound healing and embryonic development, and cell migration is affected by the surrounding nanostructure of the extracellular matrix. Many researchers have developed various nanotopographical structures to investigate cell migration behaviors in response to the nanostructures, however, it is hard to draw firm conclusions about a relationship between surface topography and cell migration due to the contradictory results. Here, as one of the possible approaches to investigate the cell migration behaviors on the nanotopographies, we developed isotropic nanopore surfaces with high and low aspect ratios to have decreased and increased adherable areas, respectively. The nanopore surface with high aspect ratio had decreased adherable area of 86 % by providing the cells to adhere only on the top surface of the nanopores, while the nanopore surface with low aspect ratio had increased adherable area of 130 % by providing the cells to perceive both on the top surface and the bottom surface of the nanopores. In contrast to our expectation, the migration speeds of fibroblast cells were both promoted on the nanopore surfaces compared to the flat surface, regardless of the increase or decrease in adherable area. We found that the maturation of the focal adhesions (FAs) at the peripheral region is a key factor determining the adhesion strength of the fibroblast cells, which in turn affects cell migration. Our findings may widen our understanding of the cell migration behaviors on the nanostructured surface according to the formation of the FAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111229 | DOI Listing |
Ann Surg Oncol
January 2025
Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan.
Background: AT-rich interaction domain 4B (ARID4B) is a transcriptional activator that regulates the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in prostate cancer. However, the role of ARID4B in hepatocellular carcinoma (HCC) has remained unclear.
Methods: This study included 162 patients who had undergone primary hepatic resection for HCC between 2008 and 2019.
Bull Math Biol
January 2025
Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France.
The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
Background: Transferrin receptor (TFRC) uptakes iron-loaded transferrin (TF) to acquire iron and regulates tumor development. Nonetheless, the clinical values and the precise functions of TF-TFRC axis in the development of oral squamous cell carcinoma (OSCC) were still undiscovered, especially the impacts of their regional heterogeneous expression.
Methods: Immunohistochemistry (IHC) was used to analyze the expression of TFRC in 106 OSCC patients.
Chromosome Res
January 2025
Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disorder involving pathological deposition of tau that includes glial inclusions and specific regional vulnerability patterns. Therapeutic developments are hampered by incomplete understanding of disease mechanisms. Few studies have examined its cell type-specific effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!