Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The electrospinning process is a promising approach to produce various drug-loaded orodispersible films (ODFs) with a rapid onset of their actions. However, there is only limited number of studies comparing the pharmacological performances of electrospun ODFs (eODFs) with traditional casting films (CFs). In this study, rizatriptan benzoate (RB), a pain relieving agent was formulated with PVP and PVA into ODFs using electrospinning and casting methods. The ODFs were subsequently characterized with respect to their morphology, solid state properties and mechanical characteristics. The uniformity of the dosage units, disintegration behavior and dissolution patterns of the ODFs were also evaluated prior to the pharmacokinetic study. The obtained CFs and eODFs were semitransparent and white in appearance, respectively. The scanning electron microscopy revealed that the eODFs contained nanoporous structure, while the CFs showed no observable pores. RB was amorphously dispersed in both these films without drug-polymer interactions. The uniformity of dosage units for both eODFs and CFs was complied with European Pharmacopeia. As compared to the CFs, the eODFs were more flexible and lesser rigid in nature and showed faster disintegration and dissolution rates. In addition, the eODFs exhibited a higher bioavailability with a shorter T relative to the CFs and commercial RB tablets. This study demonstrated that eODFs were superior to CFs with respect to in vivo pharmacological effects, which could be attributed to the submicron structure of eODFs obtained through the electrospinning process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2020.06.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!