Purpose: To estimate the prognostic value of deep learning (DL) magnetic resonance (MR)-based radiomics for stage T3N1M0 nasopharyngeal carcinoma (NPC) patients receiving induction chemotherapy (ICT) prior to concurrent chemoradiotherapy (CCRT).
Methods: A total of 638 stage T3N1M0 NPC patients (training cohort: n = 447; test cohort: n = 191) were enrolled and underwent MRI scans before receiving ICT + CCRT. From the pretreatment MR images, DL-based radiomic signatures were developed to predict disease-free survival (DFS) in an end-to-end way. Incorporating independent clinical prognostic parameters and radiomic signatures, a radiomic nomogram was built through multivariable Cox proportional hazards method. The discriminative performance of the radiomic nomogram was assessed using the concordance index (C-index) and the Kaplan-Meier estimator.
Results: Three DL-based radiomic signatures were significantly correlated with DFS in the training (C-index: 0.695-0.731, all p < 0.001) and test (C-index: 0.706-0.755, all p < 0.001) cohorts. Integrating radiomic signatures with clinical factors significantly improved the predictive value compared to the clinical model in the training (C-index: 0.771 vs. 0.640, p < 0.001) and test (C-index: 0.788 vs. 0.625, p = 0.001) cohorts. Furthermore, risk stratification using the radiomic nomogram demonstrated that the high-risk group exhibited short-lived DFS compared to the low-risk group in the training cohort (hazard ratio [HR]: 6.12, p < 0.001), which was validated in the test cohort (HR: 6.90, p < 0.001).
Conclusions: Our DL-based radiomic nomogram may serve as a noninvasive and useful tool for pretreatment prognostic prediction and risk stratification in stage T3N1M0 NPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2020.06.050 | DOI Listing |
Heliyon
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). : 236 single HCC patients were studied to establish a comprehensive prediction model.
View Article and Find Full Text PDFUltrason Imaging
January 2025
Department of Ultrasound, South China Hospital, Medical School, Shenzhen University, Shenzhen, China.
This study aims to establish and validate an ultrasound radiomics nomogram for preoperative prediction of central lymph node metastasis in papillary thyroid microcarcinoma (PTMC) before operation. A retrospective analysis conducted on ultrasonic images and clinical features derived from 288 PTMC patients, who were divided into training cohorts ( = 201) and validating cohorts ( = 87) in a ratio of 7:3 base on the principle of random allocation. Radiomics features were extracted from the PTMC patients after ultrasonic examination, followed by dimension reduction and characteristic selection to construct the radiomics score (Radscore) using LASSO regression analysis.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
Objectives: To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric cancer (GC).
Methods: A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into training cohort (n = 125) and validation cohort (n = 50).
J Neurosurg
January 2025
Departments of1Neurosurgery.
Objective: Craniopharyngiomas are rare, benign brain tumors that are primarily treated with surgery. Although the extended endoscopic endonasal approach (EEEA) has evolved as a more reliable surgical alternative and yields better visual outcomes than traditional craniotomy, postoperative visual deterioration remains one of the most common complications, and relevant risk factors are still poorly defined. Hence, identifying risk factors and developing a predictive model for postoperative visual deterioration is indeed necessary.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu road, Shapingba district, Chongqing 400030, China.
Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.
Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!