A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0.

Radiother Oncol

CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, PR China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, PR China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, PR China. Electronic address:

Published: October 2020

Purpose: To estimate the prognostic value of deep learning (DL) magnetic resonance (MR)-based radiomics for stage T3N1M0 nasopharyngeal carcinoma (NPC) patients receiving induction chemotherapy (ICT) prior to concurrent chemoradiotherapy (CCRT).

Methods: A total of 638 stage T3N1M0 NPC patients (training cohort: n = 447; test cohort: n = 191) were enrolled and underwent MRI scans before receiving ICT + CCRT. From the pretreatment MR images, DL-based radiomic signatures were developed to predict disease-free survival (DFS) in an end-to-end way. Incorporating independent clinical prognostic parameters and radiomic signatures, a radiomic nomogram was built through multivariable Cox proportional hazards method. The discriminative performance of the radiomic nomogram was assessed using the concordance index (C-index) and the Kaplan-Meier estimator.

Results: Three DL-based radiomic signatures were significantly correlated with DFS in the training (C-index: 0.695-0.731, all p < 0.001) and test (C-index: 0.706-0.755, all p < 0.001) cohorts. Integrating radiomic signatures with clinical factors significantly improved the predictive value compared to the clinical model in the training (C-index: 0.771 vs. 0.640, p < 0.001) and test (C-index: 0.788 vs. 0.625, p = 0.001) cohorts. Furthermore, risk stratification using the radiomic nomogram demonstrated that the high-risk group exhibited short-lived DFS compared to the low-risk group in the training cohort (hazard ratio [HR]: 6.12, p < 0.001), which was validated in the test cohort (HR: 6.90, p < 0.001).

Conclusions: Our DL-based radiomic nomogram may serve as a noninvasive and useful tool for pretreatment prognostic prediction and risk stratification in stage T3N1M0 NPC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2020.06.050DOI Listing

Publication Analysis

Top Keywords

radiomic nomogram
12
stage t3n1m0
12
radiomic signatures
12
deep learning
8
nasopharyngeal carcinoma
8
npc patients
8
dl-based radiomic
8
radiomic
6
learning mr-based
4
mr-based radiomic
4

Similar Publications

Background: Previous studies mostly use single-type features to establish a prediction model. We aim to develop a comprehensive prediction model that effectively identify patients with poor prognosis for single hepatocellular carcinoma (HCC) based on artificial intelligence (AI). : 236 single HCC patients were studied to establish a comprehensive prediction model.

View Article and Find Full Text PDF

This study aims to establish and validate an ultrasound radiomics nomogram for preoperative prediction of central lymph node metastasis in papillary thyroid microcarcinoma (PTMC) before operation. A retrospective analysis conducted on ultrasonic images and clinical features derived from 288 PTMC patients, who were divided into training cohorts ( = 201) and validating cohorts ( = 87) in a ratio of 7:3 base on the principle of random allocation. Radiomics features were extracted from the PTMC patients after ultrasonic examination, followed by dimension reduction and characteristic selection to construct the radiomics score (Radscore) using LASSO regression analysis.

View Article and Find Full Text PDF

Objectives: To develop a nomogram based on the radiomics features of tumour and perigastric adipose tissue adjacent to the tumor in dual-layer spectral detector computed tomography (DLCT) for lymph node metastasis (LNM) prediction in gastric cancer (GC).

Methods: A retrospective analysis was conducted on 175 patients with gastric adenocarcinoma. They were divided into training cohort (n = 125) and validation cohort (n = 50).

View Article and Find Full Text PDF

Objective: Craniopharyngiomas are rare, benign brain tumors that are primarily treated with surgery. Although the extended endoscopic endonasal approach (EEEA) has evolved as a more reliable surgical alternative and yields better visual outcomes than traditional craniotomy, postoperative visual deterioration remains one of the most common complications, and relevant risk factors are still poorly defined. Hence, identifying risk factors and developing a predictive model for postoperative visual deterioration is indeed necessary.

View Article and Find Full Text PDF

Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.

Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!