An organism's genomic base composition is usually summarized by its AT or GC content due to Chargaff's parity laws. Variation in prokaryotic GC content can be substantial between taxa but is generally small within microbial genomes. This variation has been found to correlate with both phylogeny and environmental factors. Since novel single-nucleotide polymorphisms (SNPs) within genomes are at least partially linked to the environment through natural selection, SNP GC content can be considered a compound measure of an organism's environmental influences, lifestyle, phylogeny as well as other more or less random processes. While there are several models describing genomic GC content few, if any, consider AT/GC mutation rates subjected to random perturbations. We present a mathematical model that describes how GC content in microbial genomes evolves over time as a function of the AT → GC and GC → AT mutation rates with Gaussian white noise disturbances. The model, which is suited specifically to non-recombining vertically transmitted prokaryotic symbionts, suggests that small differences in the AT/GC mutation rates can lead to profound differences in outcome due to the ensuing stochastic process. In other words, the model indicates that time to extinction could be a consequence of the mutation rate trajectory on which the symbiont embarked early on in its evolutionary history.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2020.110389 | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, University of Rome, Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
The charge transfer (CT) reactions in nucleic acids are crucial for genome damage and repair and nanoelectronics using DNA as a molecular conductor. Previous experimental and theoretical works underlined the significance of nucleic acid structural dynamics on CT kinetics, requiring models that incorporate the dynamics of the nucleic acid, solvents, and counterions. Here, we investigated hole transfer kinetics in poly adenine single and double strands at various temperatures and the rate enhancement due to adenine-to-7-deazaadenine mutation by means of a QM/MM approach.
View Article and Find Full Text PDFParkinsonism Relat Disord
December 2024
Department of Neurology and Institute of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China. Electronic address:
Introduction: The SNP rs2414739 of Vacuolar protein sorting 13 homolog C(VPS13C) gene was identified to be linked with Parkinson's Disease (PD).
Objectives: Explore the clinical progression feature of PD patients with rs2414739 variant.
Methods: Longitudinal data were obtained from the Parkinson's Progression Marker Initiative (PPMI) cohorts.
PLoS One
January 2025
Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Taylorella equigenitalis is the causative agent of sexually transmitted contagious equine metritis. Infections manifest as cervicitis, vaginitis and endometritis and cause temporary infertility and miscarriages of mares. While previous studies have analyzed this organism for various parameters, the evolutionary dynamics of this pathogen, including the emergence of antibiotic resistance, remains unresolved.
View Article and Find Full Text PDFPharmacoeconomics
January 2025
Division of Pulmonology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Road, Tainan, 704, Taiwan.
Background And Objective: Approximately half of lung adenocarcinomas in East Asia harbor epidermal growth factor receptor (EGFR) mutations. EGFR testing followed by tissue-based next-generation sequencing (NGS), upfront tissue-based NGS, and complementary NGS approaches have emerged on the front line to guide personalized therapy. We study the cost effectiveness of exclusionary EGFR testing for Taiwanese patients newly diagnosed with advanced lung adenocarcinoma.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Rett syndrome (RS) is a rare neurodevelopmental disorder primarily caused by mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene, responsible for encoding MECP2 which plays a pivotal role in regulating gene expression. The neurological and non-neurological manifestations of RS vary widely in severity depending on the specific mutation type. Bone complications, mostly scoliosis but also osteoporosis, hip displacement, and a high rate of fractures, are among the most prevalent non-neurological comorbidities observed in girls with RS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!