As global ocean-bound commerce increases, managing human activities has become important in reducing conflict with threatened wildlife. This study investigates environmental factors determining abundance and distribution of blue whales (Balaenoptera musculus), humpback whales (Megaptera novaeangliae) and their prey (Euphausia pacifica and Thysanoessa spinifera) in central California. We provide insights into environmental drivers of the ecology and distribution of these species, model whale distributions and determine coincident hotspots of whales and their prey that will help decrease human threats to whales and protect critical feeding habitat. We developed separate predictive models of whale abundances (using negative binomial regression on count data) and krill abundance (using a two-part hurdlemodel combining logistic and negative binomial regressions) over a 14 year period (2004-2017). Variables included in situ surface and midwater oceanographic measures (temperature, salinity, and fluorescence), basin-scale climate indices, and bathymetric- and distance-related data. Predictions were applied to 1 km2 cells spanning the study area for May, June, July, and September during each of the 14 years of surveys to identify persistent distribution patterns. Both whales and krill were found to consistently use the northeast region of Cordell Bank, the Farallon Escarpment, and the shelf-break waters. The main identified blue whale hotspots were also krill hotspots, while co-occurrence was more limited and varied seasonally for humpback whales and krill. These results are valuable in identifying patterns in important areas of ecological interaction to assist management of whales. Areas north of Cordell Bank are of particular management concern since they overlap with the end of the San Francisco Bay northern shipping lane. Our findings can help decrease threats to whales, particularly in important foraging areas, by supporting implementation of vessel management and informing potential conflicts with other human uses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340285 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235603 | PLOS |
Mol Psychiatry
December 2024
Department of Psychiatry and Biobehavioral Sciences, Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
Major depressive disorder (MDD) often goes undiagnosed due to the absence of clear biomarkers. We sought to identify voice biomarkers for MDD and separate biomarkers indicative of MDD predisposition from biomarkers reflecting current depressive symptoms. Using a two-stage meta-analytic design to remove confounds, we tested the association between features representing vocal pitch and MDD in a multisite case-control cohort study of Chinese women with recurrent depression.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
Sensors are indispensable tools of modern life that are ubiquitously used in diverse settings ranging from smartphones and autonomous vehicles to the healthcare industry and space technology. By interfacing multiple sensors that collectively interact with the signal to be measured, one can go beyond the signal-to-noise ratios (SNR) attainable by the individual constituting elements. Such techniques have also been implemented in the quantum regime, where a linear increase in the SNR has been achieved via using entangled states.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA).
View Article and Find Full Text PDFBiochemistry
December 2024
Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States.
(Mtb) is a leading cause of death, with an escalating global occurrence of drug-resistant infections that are partially attributed to cell wall mycolic acids derived from type II fatty acid biosynthesis (FAS-II). Here, the central acyl carrier protein, AcpM, contributes to the regulation of complex and specific protein-protein interactions (PPIs), though the orchestration of these events remain largely unresolved due to unique features of AcpM. Limitations include complexities in generating modified AcpM in a single state.
View Article and Find Full Text PDFEBioMedicine
December 2024
Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. Electronic address:
Background: There are important inter-relationships between miRNAs and metabolites: alterations in miRNA expression can be induced by various metabolic stimuli, and miRNAs play a regulatory role in numerous cellular processes, impacting metabolism. While both specific miRNAs and metabolites have been identified for their role in childhood asthma, there has been no global assessment of the combined effect of miRNAs and the metabolome in childhood asthma.
Methods: We performed miRNAome-metabolome-wide association studies ('miR-metabo-WAS') in two childhood cohorts of asthma to evaluate the contemporaneous and persistent miRNA-metabolite associations: 1) Genetic Epidemiology of Asthma in Costa Rica Study (GACRS) (N = 1121); 2) the Childhood Asthma Management Program (CAMP) (N = 312 and N = 454).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!