Acute rejection (AR) in renal transplantation is an established risk factor for reduced allograft survival. Molecules with regulatory control among immune pathways of AR that are inadequately suppressed, despite standard-of-care immunosuppression, could serve as important targets for therapeutic manipulation to prevent rejection. Here, an integrative, network-based computational strategy incorporating gene expression and genotype data of human renal allograft biopsy tissue was applied, to identify the master regulators - the key driver genes (KDGs) - within dysregulated AR pathways. A 982-meta-gene signature with differential expression in AR versus non-AR was identified from a meta-analysis of microarray data from 735 human kidney allograft biopsy samples across 7 data sets. Fourteen KDGs were derived from this signature. Interrogation of 2 publicly available databases identified compounds with predicted efficacy against individual KDGs or a key driver-based gene set, respectively, which could be repurposed for AR prevention. Minocycline, a tetracycline antibiotic, was chosen for experimental validation in a murine cardiac allograft model of AR. Minocycline attenuated the inflammatory profile of AR compared with controls and when coadministered with immunosuppression prolonged graft survival. This study demonstrates that a network-based strategy, using expression and genotype data to predict KDGs, assists target prioritization for therapeutics in renal allograft rejection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7455082PMC
http://dx.doi.org/10.1172/jci.insight.136220DOI Listing

Publication Analysis

Top Keywords

renal allograft
12
key driver
8
driver genes
8
allograft rejection
8
expression genotype
8
genotype data
8
allograft biopsy
8
allograft
6
genes potential
4
potential therapeutic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!