A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Entropy Fit Indices: New Fit Measures for Assessing the Structure and Dimensionality of Multiple Latent Variables. | LitMetric

The accurate identification of the content and number of latent factors underlying multivariate data is an important endeavor in many areas of Psychology and related fields. Recently, a new dimensionality assessment technique based on network psychometrics was proposed (Exploratory Graph Analysis, EGA), but a measure to check the fit of the dimensionality structure to the data estimated via EGA is still lacking. Although traditional factor-analytic fit measures are widespread, recent research has identified limitations for their effectiveness in categorical variables. Here, we propose three new fit measures (termed entropy fit indices) that combines information theory, quantum information theory and structural analysis: Entropy Fit Index (EFI), EFI with Von Neumman Entropy (EFI.vn) and Total EFI.vn (TEFI.vn). The first can be estimated in complete datasets using Shannon entropy, while EFI.vn and TEFI.vn can be estimated in correlation matrices using quantum information metrics. We show, through several simulations, that TEFI.vn, EFI.vn and EFI are as accurate or more accurate than traditional fit measures when identifying the number of simulated latent factors. However, in conditions where more factors are extracted than the number of factors simulated, only TEFI.vn presents a very high accuracy. In addition, we provide an applied example that demonstrates how the new fit measures can be used with a real-world dataset, using exploratory graph analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00273171.2020.1779642DOI Listing

Publication Analysis

Top Keywords

fit measures
20
entropy fit
12
fit indices
8
fit
8
latent factors
8
exploratory graph
8
graph analysis
8
entropy efivn
8
efivn tefivn
8
tefivn estimated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!