Proteomics Reveals the Mechanism Underlying the Inhibition of by Propyl Gallate.

J Agric Food Chem

College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei 230036, Anhui, China.

Published: August 2020

is a serious soil-borne pathogen, and the major control measures undertaken include the induction of soybean-resistance genes, fungicides, and scientific and reasonable planting management. Owing to the safety and resistance of fungicides, it is of great importance to screen new control alternatives. In a preliminary study, we observed that propyl gallate (PG) exerts a considerable inhibitory effect on and can effectively prevent and cure soybean diseases, although the underlying mechanism remains unclear. To explore the inhibitory mechanism of PG on , we analyzed the differences in the protein profile of before and after treatment with PG using tandem mass tag (TMT) proteomics. Proteomic analysis revealed that the number of differentially expressed proteins (DEPs) was 285, of which 75 were upregulated and 210 were downregulated, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways primarily comprised glycolysis, tricarboxylic acid cycle, fatty acid metabolism, secondary metabolite generation, and other pathways. Among the DEPs involved in PG inhibition of are two closely related uncharacterized proteins encoded by and , denoted and herein. The CRISPR/Cas9 knockout technique revealed that and were involved in the growth rate and pathogenicity. In addition, the results of gas chromatography-mass spectrometry (GC-MS) showed that there were differences in fatty acid levels between wild-type (WT) and CRISPR/Cas9 knockout transformants. Knocking out and resulted in the restriction of the synthesis and β-oxidation of long-chain fatty acids, respectively. These suggest that and were also involved in the regulation of the fatty acid metabolism. Our results aid in understanding the mechanism underlying the inhibition of growth by PG.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c02371DOI Listing

Publication Analysis

Top Keywords

fatty acid
12
mechanism underlying
8
underlying inhibition
8
propyl gallate
8
acid metabolism
8
crispr/cas9 knockout
8
proteomics reveals
4
mechanism
4
reveals mechanism
4
inhibition propyl
4

Similar Publications

Identification of fatty acid anabolism patterns to predict prognosis and immunotherapy response in gastric cancer.

Discov Oncol

January 2025

Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Background: Jianwei Xiaoshi oral liquid (JWXS), a classical traditional prescription comprising various edible medicinal plants, has demonstrated significant efficacy in treating paediatric indigestion. It originates from Jianpi Pill, which is developed in the Ming Dynasty and nourishes the spleen and regulates gastrointestinal function. However, the specific molecular mechanisms involved remain unclear.

View Article and Find Full Text PDF

The depletion of fossil fuels and growing environmental concerns necessitate the exploration of renewable energy sources. Biodiesel, a promising alternative fuel derived from sustainable feedstock, has attracted considerable attention. This study investigates the catalytic esterification of oleic acid, a readily available fatty acid, with ethanol for biodiesel production using a novel heterogeneous catalyst, ZrO/AlO.

View Article and Find Full Text PDF

Carbapenem-resistant Klebsiella pneumoniae poses a severe risk to global public health, necessitating the immediate development of novel therapeutic strategies. The current study aimed to investigate the effectiveness of the green algae Arthrospira maxima (commercially known as Spirulina) both in vitro and in vivo against carbapenem-resistant K. pneumoniae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!