A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Branched RG-I Domain Enrichment Is Indispensable for Pectin Mitigating against High-Fat Diet-Induced Obesity. | LitMetric

Highly Branched RG-I Domain Enrichment Is Indispensable for Pectin Mitigating against High-Fat Diet-Induced Obesity.

J Agric Food Chem

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.

Published: August 2020

Obesity is associated with gut microbiome dysbiosis. Our previous research has shown that highly branched rhamnogalacturonan type I (RG-I)-enriched pectin (WRP, 531.5 kDa, 70.44% RG-I, Rha/(Gal + Ara) = 20) and its oligosaccharide with less branched RG-I [DWRP, 12.1 kDa, 50.29% RG-I, Rha/(Gal + Ara) = 6] are potential prebiotics. The present study is conducted to uncover the impact of the content, molecular size, and branch degrees of RG-I on the inhibiting effect of high-fat diet (HFD)-induced obesity. The commercial pectin (CP, 496.2 kDa, 35.77% RG-I, Rha/(Gal + Ara) = 6), WRP, and DWRP were orally administered to HFD-fed C57BL/6J mice (100 mg kg d) to determine their individual effects on obesity. WRP significantly prevented bodyweight gain, insulin resistance, and inflammatory responses in HFD-fed mice. No obvious anti-obesity effect was observed in either CP or DWRP supplementation. A mechanistic study revealed that CP and DWRP could not enhance the diversity of gut microbiota, while WRP treatment positively modulated the gut microbiota of obese mice by increasing the abundance of , , , , , and cluster IV. Furthermore, WRP significantly promoted browning of white adipose tissues in HFD-fed mice, while CP and DWRP did not. WRP can attenuate the HFD-induced obesity by modulation of gut microbiota and lipid metabolism. Highly branched RG-I domain enrichment is essential for pectin mitigating against the HFD-induced obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.0c02654DOI Listing

Publication Analysis

Top Keywords

highly branched
12
branched rg-i
12
rg-i rha/gal
12
rha/gal ara
12
hfd-induced obesity
12
gut microbiota
12
rg-i domain
8
domain enrichment
8
pectin mitigating
8
hfd-fed mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!