High-pressure ESI-MS made easy using a plug-and-play ion source and its application to highly conductive aqueous solutions.

J Mass Spectrom

Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi, 400-8511, Japan.

Published: April 2021

The performance of a compact high-pressure electrospray ionization (HP-ESI) source that can be readily used for commercial atmospheric pressure ionization (API) mass spectrometers is reported. The ion source employs a converging-diverging outlet nozzle, and ions/droplets generated inside the high-pressure compartment are carried by the high-velocity air jet toward the mass spectrometry (MS) ion inlet placed under the atmospheric pressure. With the use of a shielding electrode, the HP-ESI can also be operated with its emitter held at ground potential. This feature prevents the flow of current from the emitter to other electrically grounded components and facilitates the connection of ion source to liquid chromatography (LC) columns or capillary electrophoresis. Sensitive detection of proteins from highly conductive aqueous solutions such as 0.1% trifluoroacetic acid (TFA) solution and the prevention of electrochemical artifacts by the grounded emitter operation are demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jms.4583DOI Listing

Publication Analysis

Top Keywords

ion source
12
highly conductive
8
conductive aqueous
8
aqueous solutions
8
atmospheric pressure
8
high-pressure esi-ms
4
esi-ms easy
4
easy plug-and-play
4
ion
4
plug-and-play ion
4

Similar Publications

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.

View Article and Find Full Text PDF

CO-driven ion exchange for ammonium recovery from source-separated urine.

Water Res

January 2025

Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:

Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.

View Article and Find Full Text PDF

Promising mass spectrometry imaging: exploring microscale insights in food.

Crit Rev Food Sci Nutr

January 2025

State Key Laboratory of Marine Food Processing and Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, China.

This review focused on mass spectrometry imaging (MSI), a powerful tool in food analysis, covering its ion source schemes and procedures and their applications in food quality, safety, and nutrition to provide detailed insights into these aspects. The review presented a detailed introduction to both commonly used and emerging ionization sources, including nanoparticle laser desorption/ionization (NPs-LDI), air flow-assisted ionization (AFAI), desorption ionization with through-hole alumina membrane (DIUTHAME), plasma-assisted laser desorption ionization (PALDI), and low-temperature plasma (LTP). In the MSI process, particular emphasis was placed on quantitative MSI (QMSI) and super-resolution algorithms.

View Article and Find Full Text PDF

Low-carbon fuels, emitting less carbon than fossil fuels, are proposed to help in the transition to a sustainable, decarbonized transport sector. The new biofuels being studied and developed in this context include hydrotreated vegetable oils (HVO). Its chemical composition, which is the same as fossil diesel (primarily composed of linear chain hydrocarbons C12-C24), makes HVO (more homogeneous mixtures of paraffinic hydrocarbons C10-C20, containing no sulfur or aromatics) a fuel with slightly lower density than fossil diesel due to these characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!