Poor joint health is a significant burden to society. Millions of people suffer from some form of joint-related disorder or disease, most often osteoarthritis (OA). It was hypothesized that chicken eggshell membrane (EM) is effective in the regeneration of cartilage and/or immunomodulation (oral tolerance), and as such relieves pain and stiffness in joints commonly affected in arthritis. We tested this hypothesis in a double-blind, placebo-controlled EM intervention study. Of 150 male and female volunteers, 40-75 years of age and diagnosed with knee OA, 75 were randomly assigned to the EM intervention group and 75 to the placebo group. During 12 weeks, subjects received a daily capsule containing either 300 mg of EM or a placebo. The main primary dependent variable consisted of self-reported pain ratings on a Numerical Rating Scale Pain (NRS-P) 6 weeks after study start. As secondary dependent variables served NRS-P scores collected after 12 weeks, and Knee injury and self-reported Osteoarthritis Outcome Scores (Knee injury and Osteoarthritis Outcome Scores [KOOS]). NRS-P scores decreased for both groups at approximately the same rate, but only EM relieved self-reported pain scores obtained with the KOOS questionnaire starting 1 week after initiation of treatment. This effect was significant for two of five KOOS category scores, that is, "Pain" and "Daily Life" functioning, aggregate pain, and functioning scores composed of complaint ratings for a wide variety of daily activities. These scores showed long-lasting improvement, and demonstrated that EM extract successfully reliefs knee OA pain and contributes to daily life functioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989856PMC
http://dx.doi.org/10.1089/jmf.2020.0034DOI Listing

Publication Analysis

Top Keywords

eggshell membrane
8
double-blind placebo-controlled
8
self-reported pain
8
scores
8
nrs-p scores
8
knee injury
8
osteoarthritis outcome
8
outcome scores
8
pain
7
knee
5

Similar Publications

Investigation of Filtration Performances in Eggshell Ultrafiltration Membranes with Surface Functionalized Using Graphene Oxide.

ACS Omega

December 2024

Department of Physics, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21 Jatinangor, Sumedang 45363, Indonesia.

Article Synopsis
  • This study highlights the significance of preventing fouling in ultrafiltration membranes to improve their efficiency in wastewater treatment, particularly for dissolved dye molecules.
  • Researchers tested eggshell membranes modified with different concentrations of graphene oxide (GO) to assess impacts on permeability, rejection efficiency, and flow rates.
  • The findings demonstrate that the optimal use of 0.5 mg/mL GO at 45 psi pressure significantly enhances membrane performance, achieving a rejection efficiency of 36.6% and improving the filtration process's effectiveness against dye concentration.
View Article and Find Full Text PDF
Article Synopsis
  • Chicken eggshell waste can be used as a renewable resource for producing bio-CaO quicklime, promoting sustainability and the circular economy.
  • The study focuses on optimizing bio-CaO production from hatchery waste using a rotary kiln, experimenting with different preparation methods and conditions.
  • Results showed that while increasing the kiln's filling volume had minimal impact, factors like particle size and the presence of the eggshell membrane significantly affected the yield and purity of the final product.
View Article and Find Full Text PDF

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

The eggshell membrane (ESM), resembling the extracellular matrix (ECM), acts as a protective barrier against bacterial invasion and offers various biofunctions due to its porous structure and protein-rich composition, such as ovalbumin, ovotransferrin, collagen, soluble protein, and antimicrobial proteins. However, the structure of ESM primarily comprises disulfide bonds and heterochains, which poses a challenge for protein solubilization/extraction. Therefore, the method of dissolving and extracting bioactive protein components from ESM has significant potential value and importance for exploring the reuse of egg waste and environmental protection.

View Article and Find Full Text PDF

Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow noninvasively, we test the utility of the developing chick heart as a functional model for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!