We present a detailed derivation of the generalized coupled-trajectory mixed quantum-classical (G-CT-MQC) algorithm based on the exact-factorization equations. The ultimate goal is to propose an algorithm that can be employed for molecular dynamics simulations of nonradiative phenomena, as the spin-allowed internal conversions and the spin-forbidden intersystem crossings. Internal conversions are nonadiabatic processes driven by the kinetic coupling between electronic states, whereas intersystem crossings are mediated by the spin-orbit coupling. In this paper, we discuss computational issues related to the suitable representation for electronic dynamics and the different natures of kinetic and spin-orbit coupling. Numerical studies on model systems allow us to test the performance of the G-CT-MQC algorithm in different situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.0c00493 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!