Modern genomic sequencing efforts are identifying potential diagnostic and therapeutic targets more rapidly than existing methods can generate the peptide- and protein-based ligands required to study them. To address this problem, we have developed a microfluidic enrichment device (MFED) enabling kinetic off-rate selection without the use of exogenous competitor. We tuned the conditions of the device (bed volume, flow rate, immobilized target) such that modest, readily achievable changes in flow rates favor formation or dissociation of target-ligand complexes based on affinity. Simple kinetic equations can be used to describe the behavior of ligand binding in the MFED and the kinetic rate constants observed agree with independent measurements. We demonstrate the utility of the MFED by showing a 4-fold improvement in enrichment compared to standard selection. The MFED described here provides a route to simultaneously bias pools toward high-affinity ligands while reducing the demand for target-protein to less than a nanomole per selection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10368462PMC
http://dx.doi.org/10.1021/acs.analchem.0c01867DOI Listing

Publication Analysis

Top Keywords

kinetic off-rate
8
microfluidic enrichment
8
enrichment device
8
enabling flow-based
4
kinetic
4
flow-based kinetic
4
off-rate selections
4
selections microfluidic
4
device modern
4
modern genomic
4

Similar Publications

DNA tensiometer reveals catch-bond detachment kinetics of kinesin-1, -2 and -3.

bioRxiv

December 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA.

Bidirectional cargo transport by kinesin and dynein is essential for cell viability and defects are linked to neurodegenerative diseases. The competition between motors is described as a tug-of-war, and computational modeling suggests that the load-dependent off-rate is the strongest determinant of which motor 'wins'. Optical tweezer experiments find that the load-dependent detachment sensitivity of transport kinesins is kinesin-3 > kinesin-2 > kinesin-1.

View Article and Find Full Text PDF

Measuring PETase enzyme kinetics by single-molecule microscopy.

Biophys J

November 2024

Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania. Electronic address:

Polyethylene terephthalate (PET) is one of the most widely produced man-made polymers and is a significant contributor to microplastics pollution. The environmental and human health impacts of microplastics pollution have motivated a concerted effort to develop microbe- and enzyme-based strategies to degrade PET and similar plastics. A PETase derived from the bacteria Ideonella sakaiensis was previously shown to enzymatically degrade PET, triggering multidisciplinary efforts to improve the robustness and activity of this and other PETases.

View Article and Find Full Text PDF

Analyses of transcriptional bursting from single-cell RNA-sequencing data have revealed patterns of variation and regulation in the kinetic parameters that could be inferred. Here we profiled newly transcribed (4-thiouridine-labelled) RNA across 10,000 individual primary mouse fibroblasts to more broadly infer bursting kinetics and coordination. We demonstrate that inference from new RNA profiles could separate the kinetic parameters that together specify the burst size, and that the synthesis rate (and not the transcriptional off rate) controls the burst size.

View Article and Find Full Text PDF

Conventional directed evolution methods offer the ability to select bioreceptors with high binding affinity for a specific target in terms of thermodynamic properties. However, there is a lack of analogous approaches for kinetic selection, which could yield affinity reagents that exhibit slow off-rates and thus remain tightly bound to targets for extended periods. Here, we describe an in vitro directed evolution methodology that uses the nuclease flap endonuclease 1 to achieve the efficient discovery of aptamers that have slow dissociation rates.

View Article and Find Full Text PDF

Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers.

Protein Sci

June 2024

Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.

The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!