In vitro redox activity of haemozoin and β-haemozoin interacting with the following antimalarials: artemether, lumefantrine and quinine.

Eur Rev Med Pharmacol Sci

Área Académica Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Estado de Hidalgo, México.

Published: June 2020

Objective: Malaria parasites invade, grow and multiply inside erythrocytes and obtain nourishment from haemoglobin. Then, the released haem group is oxidized to haematin and inert dimeric haemozoin bio-crystals form, which provides the parasite a unique way to avoid the toxicity associated with the haem group. Therefore, antimalarial drugs are designed to inhibit dimer formation; however, recent electrochemical studies indicate that an inert dimer also promotes a toxic oxidizing environment. Therefore, this work explores drug reactivity in the presence of monomers and dimers to evaluate their contribution to redox activity.

Materials And Methods: Three medicines mixed with haemozoin or β-haemozoin in carbon paste electrodes were tested using cyclic voltammetry.

Results: The data indicated again that the substances modify the natural redox state of haemozoin and β-haemozoin. This effect could be attributed to the natural oxidation potential of the drugs. In addition, it was found that the oxidation potential decreased through quinine, lumefantrine and artemether with the same tendency in the presence of haemozoin but with less current density. Additionally, it was observed that the oxidation response between the monomer haemozoin and antimalarial drugs is carried out at more negative potentials.

Conclusions: Together, the total results indicate that antimalarials per se can contribute to oxidation processes and that in combination with monomeric or dimeric haemozoin can increase or decrease the oxidizing power of the haemozoin forms. The various oxidizing environments suggest that the cell membranes can also be damaged by the unique presence of the antimalarial.

Download full-text PDF

Source
http://dx.doi.org/10.26355/eurrev_202006_21700DOI Listing

Publication Analysis

Top Keywords

haemozoin β-haemozoin
12
haemozoin
8
haem group
8
dimeric haemozoin
8
antimalarial drugs
8
oxidation potential
8
vitro redox
4
redox activity
4
activity haemozoin
4
β-haemozoin interacting
4

Similar Publications

In this study, we built on the known inhibitory potential of diaminoquinazolines (DAQs) against different stages of Plasmodium development and designed a convenient two-step synthesis to combine DAQ with the primaquine (PQ) pharmacophore. The PQ-DAQ hybrids displayed potent in vitro activities in the low nanomolar range (IC50 of 135.20-398.

View Article and Find Full Text PDF

Currently, artemisinin-based combination therapy is recommended as first-line treatment of uncomplicated malaria. Arylamino alcohols (AAAs) such as mefloquine (MQ) are the preferred partner drugs due to their longer half-life, reliable absorption and strong antimalarial activity. However, the mode of action of MQ remains poorly understood and its neurotoxicity limits its use.

View Article and Find Full Text PDF

Unlabelled: Hemozoin (HZ) is a waste product of hemoglobin digestion by and has been implicated in several pathological processes, including inflammation, oxidative stress, endothelial dysfunction, and immune dysregulation. Studying the effects of HZ on the human placenta is essential to understanding the impact of malaria infection during pregnancy. The present study explored the impact of HZ produced by and β-hematin, referred to here as natural HZ (nHZ) and synthetic HZ (sHZ), respectively, on human placental explants exposed .

View Article and Find Full Text PDF

For over three decades, praziquantel (PZQ) has been the mainstay chemotherapy for prevention and treatment of schistosomiasis. The excessive use of PZQ, coupled with the lack of advanced drug candidates in the current anti-schistosomiasis drug development pipeline, emphasizes the genuine need for new drugs. In the current work, we investigated the antischistosomal potential of a new series of compounds derived from the privileged benzimidazole scaffold, which exhibited low micromolar IC potency in the range of 1.

View Article and Find Full Text PDF

TKK130 is a 3-Hydroxy-Propanamidine (HPA) with Potent Antimalarial Activity and a High Barrier to Resistance.

J Med Chem

January 2025

Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Malaria continues to pose a significant burden on populations in endemic areas and requires innovative treatment options. Here, we report the synthesis and preclinical evaluation of the novel 3-hydroxypropanamidine (HPA) , which shows excellent antiplasmodial activity against drug-sensitive and -resistant strains. Moreover, in various human cell lines, the compound shows no cytotoxicity and excellent parasite selectivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!