As the most prevalent and abundant transcriptional modification in the eukaryotic genome, the continuous and dynamic regulation of N6-methyladenosine (m6A) has been shown to play a vital role in physiological and pathological processes of cardiovascular diseases (CVDs), such as ischemic heart failure (HF), myocardial hypertrophy, myocardial infarction (MI), and cardiomyogenesis. Regulation is achieved by modulating the expression of m6A enzymes and their downstream cardiac genes. In addition, this process has a major impact on different aspects of internal biological metabolism and several other external environmental effects associated with the development of CVDs. However, the exact molecular mechanism of m6A epigenetic regulation has not been fully elucidated. In this review, we outline recent advances and discuss potential therapeutic strategies for managing m6A in relation to several common CVD-related metabolic disorders and external environmental factors. Note that an appropriate understanding of the biological function of m6A in the cardiovascular system will pave the way towards exploring the mechanisms responsible for the development of other CVDs and their associated symptoms. Finally, it can provide new insights for the development of novel therapeutic agents for use in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383322 | PMC |
http://dx.doi.org/10.1631/jzus.B1900680 | DOI Listing |
Curr Med Chem
January 2025
Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
Gastrointestinal tumors, including colorectal and liver cancer, are among the most prevalent and lethal solid tumors. These malignancies are characterized by worsening prognoses and increasing incidence rates. Traditional therapeutic approaches often prove ineffective.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFNat Commun
January 2025
Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.
N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Department of Clinical Laboratory, Norinco General Hospital, Xi'an, Shaanxi, China.
Background: Recent studies show that N6-methyladenosine (m6A) plays an important role in the pathogenesis of the Alzheimer's disease (AD), while the mechanisms involved were studied insufficiently.
Aims: The present study aimed to explore the effect of human insulin-like growth factor 2 (IGF2) mRNA binding proteins 2 (IGF2BP2), one of the m6A-binding proteins on the progression of AD.
Materials & Methods: The mRNA and protein expression level were determined using RT-qPCR and western blot, respectively.
J Cell Mol Med
January 2025
Academy of Traditional Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China.
Osteoporosis, recognised as a metabolic disorder, has emerged as a significant burden on global health. Although available treatments have made considerable advancements, they remain inadequately addressed. In recent years, the role of epigenetic mechanisms in skeletal disorders has garnered substantial attention, particularly concerning mA RNA modification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!