Estrogen sulfotransferase (SULT1E) mainly catalyzes the sulfation of estrogens, which are known to prevent the pathogenesis of atherosclerosis. Recently, we found that peptides with a YKDG sequence specifically bind to oxidized low-density lipoprotein (Ox-LDL), which plays a major role in the pathogenesis of atherosclerosis. Here, we investigated the interaction between human SULT1E1 (hSULT1E1), which has a YKEG sequence (residues 61-64) unlike other human SULTs, and Ox-LDL. Results from polyacrylamide gel electrophoresis and western blotting demonstrated that hSULT1E1 specifically binds to Ox-LDL and its major lipid component (lysophosphatidylcholine; LPC), and platelet-activating factor (PAF), which bears a marked resemblance to LPC in terms of structure and activity. Moreover, an N-terminally fluorescein isothiocyanate (FITC)-labeled decapeptide (MIYKEGDVEK; FITC-hSULT1E1-P10) corresponding to residues 59-68 of hSULT1E1 specifically binds to Ox-LDL, LPC, and PAF. Unveiling the specific interaction between hSULT1E1 and Ox-LDL, LPC, and PAF provides important information regarding the mechanisms underlying various diseases caused by Ox-LDL, LPC, and PAF, such as atherosclerosis. In addition, FITC-hSULT1E1-P10 could be used as an efficient fluorescent probe for the detection of Ox-LDL, LPC, and PAF, which could facilitate the mechanistic study, identification, diagnosis, prevention, and treatment of atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/psc.3274 | DOI Listing |
Int J Mol Sci
August 2024
Xiangya School of Public Health, Central South University, Changsha 410013, China.
Neutrophil extracellular traps (NETs) are three-dimensional reticular structures that release chromatin and cellular contents extracellularly upon neutrophil activation. As a novel effector mechanism of neutrophils, NETs possess the capacity to amplify localized inflammation and have been demonstrated to contribute to the exacerbation of various inflammatory diseases, including cardiovascular diseases and tumors. It is suggested that lysophosphatidylcholine (LPC), as the primary active component of oxidized low-density lipoprotein, represents a significant risk factor for various inflammatory diseases, such as cardiovascular diseases and neurodegenerative diseases.
View Article and Find Full Text PDFAntioxidants (Basel)
August 2024
Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan.
Gestational diabetes mellitus (GDM) is a common pregnancy disorder associated with an increased risk of pre-eclampsia and macrosomia. Recent research has shown that the buildup of excess lipids within the placental trophoblast impairs mitochondrial function. However, the exact lipids that impact the placental trophoblast and the underlying mechanism remain unclear.
View Article and Find Full Text PDFCell Biol Int
September 2024
Department of Zoology, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, India.
Platelets are essential component of circulation that plays a major role in hemostasis and thrombosis. During activation and its demise, platelets release platelet-derived microvesicles, with lysophosphatidylcholine (LPC) being a prominent component in their lipid composition. LPC, an oxidized low-density lipoprotein, is involved in cellular metabolism, but its higher level is implicated in pathologies like atherosclerosis, diabetes, and inflammatory disorders.
View Article and Find Full Text PDFInt J Biol Macromol
February 2023
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
As nanotechnology is applied clinical medicine, nanoparticle-based therapy is emerging as a novel approach for the treatment of atherosclerosis. Ligand-receptor interaction affects the effectiveness of nanoparticle targeting therapy. In this study, the biomimetic peptide (BP-KFFVLK-WYKDGD) ligand specifically targeting the lysophosphatidylcholine (LPC) receptor in atherosclerotic plaques was constructed.
View Article and Find Full Text PDFInt J Mol Sci
July 2022
Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
The bioactive lipid lysophosphatidylcholine (LPC), a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL), originates from the cleavage of phosphatidylcholine by phospholipase A2 (PLA2) and is catabolized to other substances by different enzymatic pathways. LPC exerts pleiotropic effects mediated by its receptors, G protein-coupled signaling receptors, Toll-like receptors, and ion channels to activate several second messengers. Lysophosphatidylcholine (LPC) is increasingly considered a key marker/factor positively in pathological states, especially inflammation and atherosclerosis development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!