Optimized high-fidelity 3DPCR to assess potential mitochondrial targeting by activation-induced cytidine deaminase.

FEBS Open Bio

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Research Center of Stomatology, Xi'an Jiaotong University College of Stomatology, Xi'an, China.

Published: September 2020

Activation-induced cytidine deaminase (AID) initiates somatic hypermutation and class switch recombination of immunoglobulin genes in B cells, whereas off-targeted AID activity contributes to oncogenic mutations and chromosomal translocations associated with B cell malignancies. Paradoxically, only a minority of AID is allowed to access the nuclear genome, but the majority of AID is retained in the cytoplasm. It is unknown whether cytoplasmic AID can access and target the mitochondrial genome [mitochondrial DNA (mtDNA)]. To address this issue, we developed high-fidelity differential DNA denaturation PCR, which allowed the enrichment of genuine mtDNA mutations and therefore the identification of endogenous mtDNA mutation signatures in vitro. With this approach, we showed that AID targeting to mtDNA is a rare event in AID-expressing lymphoma lines. Further biochemical and microscopic analysis revealed that a fraction of cytosol AID is associated with the outer membrane of mitochondria but unable to access the mitochondrial matrix. Together, our data suggested that the mitochondrial genome is protected from AID-mediated mutagenesis by physical segregation of AID from accessing mtDNA within the mitochondrial matrix.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459399PMC
http://dx.doi.org/10.1002/2211-5463.12927DOI Listing

Publication Analysis

Top Keywords

activation-induced cytidine
8
cytidine deaminase
8
aid
8
mitochondrial genome
8
mitochondrial matrix
8
mitochondrial
5
optimized high-fidelity
4
high-fidelity 3dpcr
4
3dpcr assess
4
assess potential
4

Similar Publications

The pivotal role of CRIHSP sequences in orchestrating antigen receptor diversity and genomic stability within antigen receptor germline genes.

Int J Biol Macromol

January 2025

Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, 453003, Henan, China; School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China. Electronic address:

The mechanisms underlying antigen receptor germline gene diversification have always been a topic of intensive study. Here, we discovered that the frequency of stem-loop sequences in the antigen receptor germline gene region is remarkably higher than the genomic background. By analyzing these stem-loop sequences' similarity and distribution patterns, we found that clustered regularly interspaced homologous stem-loop pairs (CRIHSP) are widely present on the germline genes of antigen receptors in different species.

View Article and Find Full Text PDF

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

One-for-all gene inactivation via PAM-independent base editing in bacteria.

J Biol Chem

January 2025

School of Environmental Science and Engineering, Shandong University, Qingdao, China. Electronic address:

Base editing is preferable for bacterial gene inactivation without generating double-strand breaks, requiring homology recombination, or highly efficient DNA delivery capability. However, the potential of base editing is limited by the adjoined dependence on the editing window and protospacer adjacent motif. Herein, we report an unconstrained base-editing system to enable the inactivation of any genes of interest in bacteria.

View Article and Find Full Text PDF

Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients.

View Article and Find Full Text PDF

Ovulation sources ROS to confer mutagenic activities on the TP53 gene in the fallopian tube epithelium.

Neoplasia

January 2025

Center for Prevention and Therapy of Gynecological Cancers, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC; Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan, ROC; Department of Obstetrics & Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, ROC. Electronic address:

Introduction: Epidemiological studies have implicated ovulation as a risk factor for ovarian high-grade serous carcinoma (HGSC) at the initiation stage. Precancerous lesions of HGSC commonly exhibit TP53 mutations attributed to DNA deamination and are frequently localized in the fallopian tube epithelium (FTE), a site regularly exposed to ovulatory follicular fluid (FF). This study aimed to assess the mutagenic potential of FF and investigate the expression levels and functional role of activation-induced cytidine deaminase (AID) following ovulation, along with the resulting TP53 DNA deamination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!