Keratin filaments (KFs) comprise the intermediate filaments of epithelial cells and are well known for their cytoprotective properties and their mechanical resilience. Although, several studies have demonstrated KFs' remarkable tensile properties relatively little is known about acute implications of mechanical stretch on KFs in living cells. This includes structural effects on the KFs and their higher level assembly structures as well as posttranslational response mechanisms to possibly modify KF's properties. We subjected simple epithelial A549 lung cells to 30% unidirectional stretch and already after 10 seconds we observed morphological changes of the KF-network as well as structural effects on their desmosomal anchor sites-both apparently caused by the tensile strain. Interestingly, the effect on the desmosomes was attenuated after 30 seconds of cell stretch with a concomitant increase in phosphorylation of keratin8-S432, keratin18-S53, and keratin18-S34 without an apparent increase in keratin solubility. When mimicking the phosphorylation of keratin18-S34 the stretch-induced effect on the desmosomes could be diminished and probing the cell surface with atomic force microscopy showed a lowered elastic modulus. We conclude that the stretch-induced KF phosphorylation affects KF's tensile properties, probably to lower the mechanical load on strained desmosomal cell-cell contacts, and hence, preserve epithelial integrity.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.201903160RRDOI Listing

Publication Analysis

Top Keywords

cell stretch
8
keratin filaments
8
a549 lung
8
lung cells
8
tensile properties
8
structural effects
8
acute effects
4
effects cell
4
stretch
4
stretch keratin
4

Similar Publications

Molecular Clip Strategy of Modified Sulfur Cathodes for High-Performance Potassium Sulfur Batteries.

Adv Sci (Weinh)

January 2025

Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China.

Potassium-sulfur (K-S) batteries are severely limited by the sluggish reaction kinetics of the cyclooctasulfur (cyclo-S) electrode with low conductivity, which urgently requires a novel cathode to facilitate activity to improve sulfur utilization. In this study, using the wet chemistry method, the molecular clip of Li is created to replace cyclo-S molecular with the highly active chain-like S molecular. The molecular clip strategy effectively lowers the reaction barrier in potassium-sulfur systems, and the stretching of S─S bonds weakens the binding between sulfur atoms, facilitating the transformation of potassium polysulfides (KPSs).

View Article and Find Full Text PDF

This study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.

View Article and Find Full Text PDF

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Sonogenetics is a novel antiarrhythmic mechanism.

Chaos

January 2025

School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China.

Arrhythmia of the heart is a dangerous and potentially fatal condition. The current widely used treatment is the implantable cardioverter defibrillator (ICD), but it is invasive and affects the patient's quality of life. The sonogenetic mechanism proposed here focuses ultrasound on a cardiac tissue, controls endogenous stretch-activated Piezo1 ion channels on the focal region's cardiomyocyte sarcolemma, and restores normal heart rhythm.

View Article and Find Full Text PDF

Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!