Fragile X associated tremor/ataxia syndrome (FXTAS) is a late adult-onset neurodegenerative disorder that affects movement and cognition in male and female carriers of a premutation allele of 55-200 CGG repeats in the Fragile X mental retardation (FMR1) gene. It is currently unknown if and when an individual carrier of a premutation allele will develop FXTAS, as clinical assessment fails to identify carriers at risk before significant neurological symptoms are evident. The primary objective of this study was to investigate the alternative splicing landscape at the FMR1 locus in conjunction with brain measures in male individuals with a premutation allele enrolled in a very first longitudinal study, compared to age-matched healthy male controls, with the purpose of identifying biomarkers for early diagnosis, disease prediction and, a progression of FXTAS. Our findings indicate that increased expression of FMR1 mRNA isoforms, including Iso4/4b, Iso10/10b, as well as of the ASFMR1 mRNAs Iso131bp, are present in premutation carriers as compared to non-carrier healthy controls. More specifically, we observed a higher expression of Iso4/4b and Iso10/10b, which encode for truncated proteins, only in those premutation carriers who developed symptoms of FXTAS over time as compared to non-carrier healthy controls, suggesting a potential role in the development of the disorder. In addition, we found a significant association of these molecular changes with various measurements of brain morphology, including the middle cerebellar peduncle (MCP), superior cerebellar peduncle (SCP), pons, and midbrain, indicating their potential contribution to the pathogenesis of FXTAS. Interestingly, the high expression levels of Iso4/4b observed both at visit 1 and visit 2 and found to be associated with a decrease in mean MCP width only in those individuals who developed FXTAS over time, suggests their role as potential biomarkers for early diagnosis of FXTAS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338407PMC
http://dx.doi.org/10.1038/s41598-020-67946-yDOI Listing

Publication Analysis

Top Keywords

premutation allele
12
fmr1 locus
8
tremor/ataxia syndrome
8
fxtas
8
syndrome fxtas
8
biomarkers early
8
early diagnosis
8
iso4/4b iso10/10b
8
premutation carriers
8
compared non-carrier
8

Similar Publications

Fragile X syndrome (FXS) is a genetic condition caused by the inheritance of alleles with >200 CGG repeats in the 5' UTR of the fragile X messenger ribonucleoprotein 1 () gene. These full mutation (FM) alleles are associated with DNA methylation and gene silencing, which result in intellectual disabilities, developmental delays, and social and behavioral issues. Mosaicism for both the size of the CGG repeat tract and the extent of its methylation is commonly observed in individuals with the FM.

View Article and Find Full Text PDF

Advancing molecular diagnostics of myotonic dystrophy type 1 using short-read whole genome sequencing.

Mol Cell Probes

December 2024

Institute of Clinical and Translational Research, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia; Comenius University Science Park, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; G2 Consulting Slovakia Ltd., Slovakia. Electronic address:

Myotonic dystrophy type 1 (DM1) is a serious multisystem disorder caused by GCA repeat expansions in the DMPK gene. Early and accurate diagnosis, often requiring reliable DNA-diagnostic techniques, is critical for preventing life-threatening cardiac complications. Clinically, two main diagnostic challenges exist.

View Article and Find Full Text PDF

Genetic study on candidates for oocyte donation.

JBRA Assist Reprod

December 2024

Genetics Unit, Department of Pathology, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.

Objective: There is a rising demand for assisted reproductive medicine, including sperm, oocyte and embryo donation. Besides medical and legal considerations, genetic testing, including carrier screening for multiple autosomal and X-linked recessive disorders plays an essential role in evaluating hereditary risk among donors and therefore exclude them from the donation process.

Methods: A retrospective study was conducted on oocyte donors from a private clinic of assisted reproduction who underwent genetic testing between June 2014 and September 2023.

View Article and Find Full Text PDF

Genetics architecture of spontaneous coronary artery dissection in an Italian cohort.

Front Cardiovasc Med

November 2024

Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.

Spontaneous coronary artery dissection (SCAD) is a relevant non-atherosclerotic cause of acute coronary syndrome with a complex genetic architecture. Recent discoveries have highlighted the potential role of miRNAs and protein-coding genes involved in the processing of small RNAs in the pathogenesis of SCAD. Furthermore, there may be a connection between SCAD and the increased cardiovascular risk observed in fragile X premutation carriers as well as a correlation with pathogenetic variants in genes encoding for collagen and extracellular matrix, which are related to connective tissue disorders (CTDs).

View Article and Find Full Text PDF

Background: Premutation alleles of the FMR1 X-linked gene containing CGG repeat expansions ranging from 55 to 200 are associated with diverse late-onset neurological involvements, including most severe disorder termed Fragile X-associated Tremor/Ataxia Syndrome (FXTAS). It is intriguing that at least one-third of male, and a much lower than predicted from the X-linkage proportion of female carriers are free of this syndrome. This suggests the existence of secondary genetic factors modifying the risk of neurological involvements in these carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!