In response to pathogenic threats, naive T cells rapidly transition from a quiescent to an activated state, yet the underlying mechanisms are incompletely understood. Using a pulsed SILAC approach, we investigated the dynamics of mRNA translation kinetics and protein turnover in human naive and activated T cells. Our datasets uncovered that transcription factors maintaining T cell quiescence had constitutively high turnover, which facilitated their depletion following activation. Furthermore, naive T cells maintained a surprisingly large number of idling ribosomes as well as 242 repressed mRNA species and a reservoir of glycolytic enzymes. These components were rapidly engaged following stimulation, promoting an immediate translational and glycolytic switch to ramp up the T cell activation program. Our data elucidate new insights into how T cells maintain a prepared state to mount a rapid immune response, and provide a resource of protein turnover, absolute translation kinetics and protein synthesis rates in T cells ( https://www.immunomics.ch ).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610365PMC
http://dx.doi.org/10.1038/s41590-020-0714-5DOI Listing

Publication Analysis

Top Keywords

naive cells
8
translation kinetics
8
kinetics protein
8
protein turnover
8
cells
5
dynamics protein
4
protein translation
4
translation sustaining
4
sustaining cell
4
cell preparedness
4

Similar Publications

Overcoming luminal breast cancer (BrCa) progression remains a critical challenge for improved overall patient survival. RUNX2 has emerged as a protein related to aggressiveness in triple-negative BrCa, however its role in luminal tumors remains elusive. We have previously shown that active FGFR2 (FGFR2-CA) contributes to increased tumor growth and that RUNX2 expression was high in hormone-independent mouse mammary carcinomas.

View Article and Find Full Text PDF

The immune system has garnered attention due to its association with disease progression in amyotrophic lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile immune cells concerning the rate of disease progression in patients with ALS.

View Article and Find Full Text PDF

Periodic mesoporous organicsilica-loaded mincle agonists enhance the immunogenicity of COVID-19 subunit vaccines by dual activation of B cells and dendritic cells.

Acta Biomater

December 2024

National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China. Electronic address:

Effective vaccination is crucial for intervening in the COVID-19 pandemic. However, with the continuous mutation of the SARS-CoV-2, existing vaccines including subunit vaccines cannot effectively prevent virus infections. Hence, there is an urgent need to enhance the immunogenicity of existing vaccines to induce a more potent and durable immune response.

View Article and Find Full Text PDF

QuantiFERON SARS-CoV-2 assay for the evaluation of cellular immunity after immunization with mRNA SARS-CoV-2 vaccines: a systematic review and meta-analysis.

Immunol Res

December 2024

Department of Pediatrics, Infectious Diseases and Chemotherapy Research Laboratory, Medical School, National and Kapodistrian University of Athens, Aghia Sophia" Children's Hospital, 11527, Athens, Greece.

A systematic review and meta-analysis were performed to evaluate the virus-specific T-cell response after COVID-19 mRNA vaccination, using the QuantiFERON SARS-CoV-2 interferon-γ release assay. A search was conducted (June 8, 2023) in the PUBMED, SCOPUS, and medRxiv databases, to identify studies reporting the QuantiFERON SARS-CoV-2 (Starter (two antigen tubes) or Starter + Extended Pack (three antigen tubes), cut-off ≥ 0.15 IU/mL) positivity rate (PR) in immunocompetent adults, following the administration of two or three COVID-19 mRNA vaccine doses.

View Article and Find Full Text PDF

Botulinum neurotoxin type-A (BoNT/A), which blocks quantal acetylcholine (ACh) release at the neuromuscular junction (NMJ), has demonstrated its efficacy in the symptomatic treatment of blepharospasm. In 3.89% of patients treated for blepharospasm at Tenon Hospital, BoNT/A was no longer effective in relieving the patient's symptoms, and a partial upper myectomy of the muscle was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!