The dispersion properties of metamaterials and photonic crystals (PhCs) lead to an intensive research in the development of cavity resonators for the confinement of electromagnetic (e-m) radiation. In this work, we investigate the formation of Fabry-Pérot (FP) modes associated with hyperbolic-like dispersion (HLD) regimes in two-dimensional dielectric PhCs. Conventionally, FP modes are formed using an optical etalon, in which electromagnetic (e-m) waves reflecting from a partially reflecting mirror separated by a distance can interfere constructively and form a resonating mode. The FP mode observed in dielectric PhCs is formed due to the interference of cylindrical wavefronts inside the PhC interface at HLD frequencies. The FP modes in PhCs are surface localized, in which maxima/minima of the electric field lies along the air-PhC interface as a standing wave pattern and decays in air medium. Projected bandstructure, Eigen Frequency Contours (EFC), phase and group index calculations are carried out to explain the formation of FP modes in PhCs under different coupling cases. By varying the PhC dimension, FP modes with different spatial profiles are witnessed and the role of source position in exciting specific mode is demonstrated. The observed FP modes in PhCs are compared with the FP mode in an ideal indefinite slab. Based on the FP resonance in PhCs, a sensing device capable of detecting a bending angle less than [Formula: see text] is demonstrated numerically. The FP modes in PhCs are scalable to other parts of e-m spectra so that the bending angle sensing can be extendable to terahertz and optical domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338461PMC
http://dx.doi.org/10.1038/s41598-020-67965-9DOI Listing

Publication Analysis

Top Keywords

modes phcs
16
bending angle
12
fabry-pérot modes
8
modes associated
8
associated hyperbolic-like
8
hyperbolic-like dispersion
8
photonic crystals
8
phcs
8
electromagnetic e-m
8
dielectric phcs
8

Similar Publications

Optical microcavities embedded with transition metal dichalcogenide (TMDC) membranes have been demonstrated as excellent platforms to explore strong light-matter interactions. Most of the previous studies focus on strong coupling between excitons of unpatterned TMDC membranes and optical resonances of various microcavities. It is recently found that TMDC membranes patterned into photonic crystal (PhC) slabs can sustain guided-mode resonances that can be excited and probed by far-fields.

View Article and Find Full Text PDF

Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes.

Nat Commun

July 2023

Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China.

Photonic crystals (PhCs) are a kind of artificial structures that can mold the flow of light at will. Polaritonic crystals (PoCs) made from polaritonic media offer a promising route to controlling nano-light at the subwavelength scale. Conventional bulk PhCs and recent van der Waals PoCs mainly show highly symmetric excitation of Bloch modes that closely rely on lattice orders.

View Article and Find Full Text PDF

Detailed studies of the luminescent properties of the Si-based 2D photonic crystal (PhC) slabs with air holes of various depths are reported. Ge self-assembled quantum dots served as an internal light source. It was obtained that changing the air hole depth is a powerful tool which allows tuning of the optical properties of the PhC.

View Article and Find Full Text PDF

According to the Bragg scattering theory, terahertz (THz) photonic bandgaps (PBGs) in all-dielectric one-dimensional (1-D) photonic crystals (PhCs) are strongly dependent on the incident angle. Such a strongly angle-dependent property of the PBGs not only limits the widths of omnidirectional PBGs, but also causes the strongly angle-dependent property of defect modes and optical Tamm states in multilayer structures containing all-dielectric 1-D PhCs. Until now, ways to achieve a THz angle-independent PBG have been an open problem.

View Article and Find Full Text PDF

Metamaterials with negative permittivities or/and permeabilities greatly enrich photonic bandgap (PBG) engineering in one-dimensional (1-D) photonic crystals (PhCs). Nevertheless, their inevitable optical losses strongly destroy the crucial prohibition characteristic of PBGs, which makes such engineered PBGs not utilizable in some relevant physical processes and optical/optoelectronic devices. Herein, we bridge a link between 1-D PhCs and all-dielectric loss-free metamaterials and propose a hybrid 1-D PhC containing all-dielectric elliptical metamaterials to engineer angle-dependence of PBGs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!