Cerebral dopamine neurotrophic factor (CDNF) protects dopaminergic neurons against toxic damage in the rodent brain and is in clinical trials to treat Parkinson's disease patients. Yet the underlying mechanism is poorly understood. To examine its significance for neural circuits and behavior, we examined the development of neurotransmitter systems from larval to male adult mutant zebrafish lacking Although a lack of did not affect overall brain dopamine levels, dopaminergic neuronal clusters showed significant abnormalities. The number of histamine neurons that surround the dopaminergic neurons was significantly reduced. Expression of in the brain was elevated in mutants throughout their lifespan. There were abnormally few GABA neurons in the hypothalamus in the mutant larvae, and expression of glutamate decarboxylase was reduced throughout the brain. mutant adults showed a range of behavioral phenotypes, including increased sensitivity to pentylenetetrazole-induced seizures. Shoaling behavior of mutant adults was abnormal, and they did not display social attraction to conspecifics. CDNF plays a profound role in shaping the neurotransmitter circuit structure, seizure susceptibility, and complex behaviors in zebrafish. These findings are informative for dissecting the diverse functions of this poorly understood factor in human conditions related to Parkinson's disease and complex behaviors. A zebrafish lacking cdnf grows normally and shows no overt morphologic phenotype throughout the life span. Remarkably, impaired social cohesion and increased seizure susceptibility were found in adult KO fish conceivably associated with significant changes of dopaminergic, GABAergic, and histaminergic systems in selective brain areas. These findings suggest that cdnf has broad effects on regulating neurogenesis and maturation of transmitter-specific neuronal types during development and throughout adulthood, rather than ones restricted to the dopaminergic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406287 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.2636-19.2020 | DOI Listing |
iScience
January 2025
Institute of Neuroscience and Medicine 10, Research Centre Jülich, 52425 Jülich, Germany.
The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.
View Article and Find Full Text PDFACS Omega
January 2025
CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States.
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors.
View Article and Find Full Text PDFPeerJ
January 2025
Medical section, Jiang Ling County People's Hospital, Hubei, Jiangling County, Jingzhou City, China.
Background: This study investigates the protective properties of melatonin in an Parkinson's disease (PD) model, focusing on the underlying mechanisms involving heat shock proteins (HSPs).
Methods: Twelve adult male C57BL/6 mice were randomly divided into four groups (normal control, melatonin control, Parkinson's model, and melatonin treatment; = 3 per group) and housed in a single cage. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected intraperitoneally in the Parkinson's model and treatment groups to establish a subacute PD model, while controls received saline.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!