C2-substituted quinazolinone derivatives exhibit A and/or A adenosine receptor affinities in the low micromolar range.

Bioorg Med Chem Lett

Centre of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Pharmaceutical Chemistry, School of Pharmacy, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.

Published: August 2020

AI Article Synopsis

Article Abstract

Antagonists of the adenosine receptors (A and A subtypes) are widely researched as potential drug candidates for their role in Parkinson's disease-related cognitive deficits (A subtype), motor dysfunction (A subtype) and to exhibit neuroprotective properties (A subtype). Previously the benzo-α-pyrone based derivative, 3-phenyl-1H-2-benzopyran-1-one, was found to display both A and A adenosine receptor affinity in the low micromolar range. Prompted by this, the α-pyrone core was structurally modified to explore related benzoxazinone and quinazolinone homologues previously unknown as adenosine receptor antagonists. Overall, the C2-substituted quinazolinone analogues displayed superior A and A adenosine receptor affinity over their C2-substituted benzoxazinone homologues. The benzoxazinones were devoid of A adenosine receptor binding, with only two compounds displaying A adenosine receptor affinity. In turn, the quinazolinones displayed varying degrees of affinity (low micromolar range) towards the A and A adenosine receptor subtypes. The highest A adenosine receptor affinity and selectivity were favoured by methyl para-substitution of phenyl ring B (AK = 2.50 μM). On the other hand, 3,4-dimethoxy substitution of phenyl ring B afforded the best A adenosine receptor binding (AK = 2.81 μM) among the quinazolinones investigated. In conclusion, the quinazolinones are ideal lead compounds for further structural optimization to gain improved adenosine receptor affinity, which may find therapeutic relevance in Parkinson's disease-associated cognitive deficits and motor dysfunctions as well as exerting neuroprotective properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127274DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
40
receptor affinity
20
low micromolar
12
micromolar range
12
adenosine
11
receptor
10
c2-substituted quinazolinone
8
cognitive deficits
8
neuroprotective properties
8
affinity low
8

Similar Publications

P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.

View Article and Find Full Text PDF

Action potential-independent spontaneous microdomain Ca transients-mediated continuous neurotransmission regulates hyperalgesia.

Proc Natl Acad Sci U S A

January 2025

Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.

Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Lipopolysaccharide-Neutralizing Peptide Modulates P2X7 Receptor-Mediated Interleukin-1β Release.

ACS Pharmacol Transl Sci

January 2025

Pharmaceutical Institute, Pharmacology and Toxicology, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany.

Lipopolysaccharide (LPS)-neutralizing peptides are emerging as new potential therapeutic modalities to treat sepsis and skin infections. Purinergic ligand-gated ion channels (P2X receptors) play a critical role in various biological processes, including inflammation. Recent drug development efforts have significantly focused on the modulation of P2X receptors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!