N-[F]-Fluoroacetylcrizotinib: A potentially potent and selective PET tracer for molecular imaging of non-small cell lung cancer.

Bioorg Med Chem Lett

Vanderbilt Center for Molecular Probes, United States; Vanderbilt University, Institute of Imaging Science, United States; Vanderbilt University Medical Center, United States; Department of Radiology, Vanderbilt University Medical Center, United States. Electronic address:

Published: August 2020

N-[F]fluoroacetylcrizotinib, a fluorine-18 labeled derivative of the first FDA approved tyrosine kinase inhibitor (TKI) for the treatment of Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), crizotinib, was successfully synthesized for use in positron emission tomography (PET). Sequential in vitro biological evaluation of fluoracetylcrizotinib and in vivo biodistribution studies of [F]fluoroacetylcrizotinib demonstrated that the biological activity of the parent compound remained unchanged, with potent ALK kinase inhibition and effective tumor growth inhibition. These results show that [F]fluoroacetylcrizotinib has the potential to be a promising PET ligand for use in NSCLC imaging. The utility of PET in this context provides a non-invasive, quantifiable method to inform on the pharmacokinetics of an ALK-inhibitor such as crizotinib prior to a clinical trial, as well as during a trial in the event of acquired drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7357882PMC
http://dx.doi.org/10.1016/j.bmcl.2020.127257DOI Listing

Publication Analysis

Top Keywords

non-small cell
8
cell lung
8
lung cancer
8
n-[f]-fluoroacetylcrizotinib potent
4
potent selective
4
pet
4
selective pet
4
pet tracer
4
tracer molecular
4
molecular imaging
4

Similar Publications

Targeting KRAS: from metabolic regulation to cancer treatment.

Mol Cancer

January 2025

Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.

The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.

View Article and Find Full Text PDF

Comprehensive analysis pinpoints CCNA2 as a prognostic and immunological biomarker in non-small cell lung cancer.

BMC Pulm Med

January 2025

Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, 89 Guhuai Road, Jining, Shandong Province, 272029, PR China.

Background: Lung cancer is a leading cause of morbidity and mortality globally. Despite advances in targeted and immunotherapies, overall survival (OS) rates remain suboptimal. Cyclin-A2 (CCNA2), known for its upregulation in various tumors and role in tumorigenesis, has an undefined function in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

The climb toward intracranial efficacy: Zorifertinib in EGFR-mutant NSCLC with CNS metastases in the EVEREST trial.

Med

January 2025

Division of Neuro-Oncology, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA. Electronic address:

The phase III EVEREST trial evaluating zorifertinib in the treatment of metastatic EGFR-mutant NSCLC was groundbreaking in its specific inclusion of patients with brain metastases. Zorifertinib prolonged systemic and intracranial progression-free survival compared with first-generation EGFR inhibitors, yet questions remain about its efficacy and toxicity compared with osimertinib.

View Article and Find Full Text PDF

Tumor immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a powerful strategy in treating malignant tumors, exhibiting efficacy in both first-line and second-line treatments for advanced non-small cell lung cancer (NSCLC). Despite their success, ICIs can lead to adverse reactions, including interstitial lung disease (ILD), with an incidence ranging from 2.7 % to 20.

View Article and Find Full Text PDF

Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer.

Cell Immunol

January 2025

Department of Anatomy, College of Medicine, King Saud University, Saudia Arabia. Electronic address:

Background: Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!