A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation. | LitMetric

Background/aims: In oncology, new combined treatments make it difficult to order dose levels according to monotonically increasing toxicity. New flexible dose-finding designs that take into account uncertainty in dose levels ordering were compared with classical designs through simulations in the setting of the monotonicity assumption violation. We give recommendations for the choice of dose-finding design.

Methods: Motivated by a clinical trial for patients with high-risk neuroblastoma, we considered designs that require a monotonicity assumption, the Bayesian Continual Reassessment Method, the modified Toxicity Probability Interval, the Bayesian Optimal Interval design, and designs that relax monotonicity assumption, the Bayesian Partial Ordering Continual Reassessment Method and the No Monotonicity Assumption design. We considered 15 scenarios including monotonic and non-monotonic dose-toxicity relationships among six dose levels.

Results: The No Monotonicity Assumption and Partial Ordering Continual Reassessment Method designs were robust to the violation of the monotonicity assumption. Under non-monotonic scenarios, the No Monotonicity Assumption design selected the correct dose level more often than alternative methods on average. Under the majority of monotonic scenarios, the Partial Ordering Continual Reassessment Method selected the correct dose level more often than the No Monotonicity Assumption design. Other designs were impacted by the violation of the monotonicity assumption with a proportion of correct selections below 20% in most scenarios. Under monotonic scenarios, the highest proportions of correct selections were achieved using the Continual Reassessment Method and the Bayesian Optimal Interval design (between 52.8% and 73.1%). The costs of relaxing the monotonicity assumption by the No Monotonicity Assumption design and Partial Ordering Continual Reassessment Method were decreases in the proportions of correct selections under monotonic scenarios ranging from 5.3% to 20.7% and from 1.4% to 16.1%, respectively, compared with the best performing design and were higher proportions of patients allocated to toxic dose levels during the trial.

Conclusions: Innovative oncology treatments may no longer follow monotonic dose levels ordering which makes standard phase I methods fail. In such a setting, appropriate designs, as the No Monotonicity Assumption or Partial Ordering Continual Reassessment Method designs, should be used to safely determine recommended for phase II dose.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1740774520932130DOI Listing

Publication Analysis

Top Keywords

monotonicity assumption
52
continual reassessment
28
reassessment method
28
partial ordering
20
ordering continual
20
dose levels
16
assumption design
16
monotonicity
13
assumption
13
monotonic scenarios
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!