Fe Single Atoms and FeO Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions.

ACS Appl Mater Interfaces

The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 214001, P. R. China.

Published: July 2020

In the area of catalysis, selective reduction of nitro compounds to amino compounds is a colossal challenge due to the existence of competitive reducible functional groups. Herein, an Fe-based catalyst Fe/FeO/N-doped polyhedral carbon (NPC) has been designed and synthesized. As we expected, compared with Fe and Fe, Fe/FeO/NPC shows excellent catalytic performance (turnover frequency up to 1923 h, calculated with nitrobenzene), chemoselectivity, and tolerance during the hydrogenation reaction of nitro compounds under room temperature because of the synergistic effects between Fe and FeO. The theoretical calculations show that Fe prefers to undergo hydrazine decomposition to generate hydrogen and the FeO surface is more active toward the nitrobenzene reduction to aniline.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c09124DOI Listing

Publication Analysis

Top Keywords

polyhedral carbon
8
nitro compounds
8
single atoms
4
atoms feo
4
feo clusters
4
clusters liberated
4
liberated n-doped
4
n-doped polyhedral
4
carbon chemoselective
4
chemoselective hydrogenation
4

Similar Publications

Carboxysomes: The next frontier in biotechnology and sustainable solutions.

Biotechnol Adv

December 2024

Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia. Electronic address:

Some bacteria possess microcompartments that function as protein-based organelles. Bacterial microcompartments (BMCs) sequester enzymes to optimize metabolic reactions. Several BMCs have been characterized to date, including carboxysomes and metabolosomes.

View Article and Find Full Text PDF

Effect of Exposed Facets and Oxidation State of CeO Nanoparticles on CO Adsorption and Desorption.

ACS Sustain Chem Eng

May 2024

New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

CeO nanoparticles exhibit potential as solid adsorbents for carbon dioxide (CO) capture and storage (CCS), offering precise control over various facets and enhancing their efficiency. This study investigated the adsorption and desorption behaviors of two types of CeO nanoparticles: cubic CeO with primarily {001} facets and polyhedral CeO with mainly {111} facets. The results showed that despite polyhedral CeO's lower quantity, it demonstrated successful adsorption-desorption cycles in both oxidized and reduced states.

View Article and Find Full Text PDF

Engineering CO-fixing modules in E. coli via efficient assembly of cyanobacterial Rubisco and carboxysomes.

Plant Commun

December 2024

Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. Electronic address:

Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) is the central enzyme for converting atmospheric CO into organic molecules, playing a crucial role in the global carbon cycle. In cyanobacteria and some chemoautotrophs, Rubisco complexes, along with carbonic anhydrase, are enclosed within specific proteinaceous microcompartments, known as carboxysomes. The polyhedral carboxysome shell ensures a dense packaging of Rubisco and creates a high-CO internal environment to facilitate the fixation of CO.

View Article and Find Full Text PDF

Molecular principles of the assembly and construction of a carboxysome shell.

Sci Adv

November 2024

MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.

Article Synopsis
  • * The carboxysome shell contains various protein structures that help concentrate carbon dioxide around the enzyme Rubisco, which is crucial for the carboxylation process.
  • * Recent research using cryo-electron microscopy has revealed insights into how these shell proteins assemble, highlighting the importance of the scaffolding protein CsoS2 in forming larger shell structures.
View Article and Find Full Text PDF

A robust synthetic biology toolkit to advance carboxysome study and redesign.

bioRxiv

October 2024

Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA.

Carboxysomes are polyhedral protein organelles that microorganisms use to facilitate carbon dioxide assimilation. They are composed of a modular protein shell which envelops an enzymatic core mainly comprised of physically coupled Rubisco and carbonic anhydrase. While the modular construction principles of carboxysomes make them attractive targets as customizable metabolic platforms, their size and complexity can be a hinderance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!