Tracking of biological and physiological processes on the nanoscale is a central part of the growing field of nanomedicine. Although atomic force microscopy (AFM) is one of the most appropriate techniques in this area, investigations in non-transparent fluids such as human blood are not possible with conventional AFMs due to limitations caused by the optical readout. Here, we show a promising approach based on self-sensing cantilevers (SSC) as a replacement for optical readout in biological AFM imaging. Piezo-resistors, in the form of a Wheatstone bridge, are embedded into the cantilever, whereas two of them are placed at the bending edge. This enables the deflection of the cantilever to be precisely recorded by measuring the changes in resistance. Furthermore, the conventional acoustic or magnetic vibration excitation in intermittent contact mode can be replaced by a thermal excitation using a heating loop. We show further developments of existing approaches enabling stable measurements in turbid liquids. Different readout and excitation methods are compared under various environmental conditions, ranging from dry state to human blood. To demonstrate the applicability of our laser-free bio-AFM for nanomedical research, we have selected the hemostatic process of blood coagulation as well as ultra-flat red blood cells in different turbid fluids. Furthermore, the effects on noise and scanning speed of different media are compared. The technical realization is shown (1) on a conventional optical beam deflection (OBD)-based AFM, where we replaced the optical part by a new SSC nose cone, and (2) on an all-electric AFM, which we adapted for measurements in turbid liquids.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374447PMC
http://dx.doi.org/10.3390/s20133715DOI Listing

Publication Analysis

Top Keywords

turbid liquids
12
atomic force
8
force microscopy
8
human blood
8
optical readout
8
measurements turbid
8
microscopy imaging
4
turbid
4
imaging turbid
4
liquids promising
4

Similar Publications

This study aimed to investigate the performance differences of low-sodium myofibrillar protein (MP) gels substituted by different chloride salt mixtures from the perspective of gelation process. The results revealed that low-sodium MP substituted by KCl/CaCl exhibited higher turbidity and particle size at 40 % substitution, and formed protein aggregates earlier at 53 °C. During the gelation process, KCl/CaCl increased the extent of cross-linking as the substitution level increased from 10 % to 40 %, which was prone to forming final gels with poor palatability.

View Article and Find Full Text PDF

In the present study, ohmic heating system was developed for the pasteurization of liquid egg white. A batch reactor system was designed with a capacity of 100 ml and operated at varied gradients of voltage (20, 15, 10 V/cm), frequencies (10, 55, 100 Hz), holding times (1, 2.5, 4 min) at two different waveforms (sine and square).

View Article and Find Full Text PDF

Berries are a valuable source of numerous bioactive compounds, and they have an interesting organoleptic profile. Unfortunately, their low storage life determines the need for their preservation. Among the various methods used in this regard, it was decided to use the High Temperature Short Time (HTST) (90 °C/15 s) and Ultra-High Temperature (UHT) (130 °C/5 s) methods to preserve the produced fruit nectar blends (strawberry-blackcurrant and strawberry-chokeberry).

View Article and Find Full Text PDF

The photo-Fenton process faces significant limitations in treating high-turbidity, colored wastewater due to light attenuation and impurity interference (blocked mass transfer). To address these issues, we developed a suspended photothermal Fenton membrane by loading a photothermal catalyst on a hydrophobically modified cotton filter paper, enabling precise suspension 1 mm below the water surface. This design achieved 89.

View Article and Find Full Text PDF

Recovery of protein from tofu whey wastewater using protein-based coagulant.

Environ Technol

December 2024

Research Center for Genetic Engineering, The National Research and Innovation Agency of the Republic of Indonesia (BRIN), Bogor, Indonesia.

Tofu whey wastewater is the protein-rich liquid by-product of tofu production that has the potential as a source stream for biobased products. Coagulation can be used to recover protein from tofu whey. Biobased coagulants are alternatives for polymer- and metal-based coagulants, particularly if the precipitate is recovered and used for further processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!