Extraction of Microfibrillar Cellulose From Waste Paper by NaOH/Urethane Aqueous System and Its Utility in Removal of Lead from Contaminated Water.

Materials (Basel)

Global Core Research Centre for Ships and Offshore Plants (GCRC-SOP), Pusan National University, Busan 46241, Korea.

Published: June 2020

Though recycling of waste paper is widely practiced but usually it is downgraded to lower valued recycled waste paper. Based on this concern, we report the development of novel NaOH/urethane aqueous system for extraction of microfibrillated cellulose from waste paper. The purity of so obtained microfibrillated cellulose (MFC) was evaluated by morphological tests using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and by evaluation of physicochemical properties using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Morphologies of MFC studied by SEM and TEM showed that the size of purified cellulose fibrils reduced when compared to that of waste paper but fibrils are cleaner and smoother due to the removal of talc and lignin. XRD analysis revealed that MFC exhibits good crystallinity. The utility of sulfonated and pristine microfibrillar cellulose in removal of lead from contaminated water is also reported. Our results show that renewable, sustainable, cheap, and waste biomass like waste paper can be used for producing valuable second-generation high-value products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345829PMC
http://dx.doi.org/10.3390/ma13122850DOI Listing

Publication Analysis

Top Keywords

waste paper
24
microfibrillar cellulose
8
cellulose waste
8
naoh/urethane aqueous
8
aqueous system
8
removal lead
8
lead contaminated
8
contaminated water
8
microfibrillated cellulose
8
electron microscopy
8

Similar Publications

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Rethinking the biochar impact on the anaerobic digestion of food waste in bench-scale digester: Spatial distribution and biogas production.

Bioresour Technol

January 2025

Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.

The improvement of biogas production in anaerobic digestion (AD) by biochar introduction has been demonstrated. However, the distribution of biochar in the digester and its effect on AD have been seldom explored. In this study, the distribution of biochar and their impact on AD were investigated in a 30 L semi-continuously operated bench-scale anaerobic digester.

View Article and Find Full Text PDF

As the volume of plastic waste from electrical and electronic equipment (WEEE) continues to rise, a significant portion is disposed of in the environment, with only a small fraction being recycled. Both disposal and recycling pose unknown health risks that require immediate attention. Existing knowledge of WEEE plastic toxicity is limited and mostly relies on epidemiological data and association studies, with few insights into the underlying toxicity mechanisms.

View Article and Find Full Text PDF

For the effective removal of phenol from the environment, photocatalytic synergistic adsorption is currently one of the key methods. By leveraging the polysaccharide backbone structure of sodium alginate (SA),Zinc hydroxystannate (ZHS) was introduced into the gel structure using a co-precipitation technique. Additionally, gangue waste was repurposed through a polymerization reaction.

View Article and Find Full Text PDF

Recently, thallium (Tl) contamination at trace levels has gained worldwide attention, particularly in the remote ore-smelting regions of China. To effectively eliminate the residual target Tl(I) ions, one of the best strategies is to develop novel adsorbents with high selectivity. In this study, we selected silicate mineral waste (SMW) and chitosan (CTS) to synthesize a low-cost composite adsorbent for the removal of trace Tl(I).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!