Bed Bugs (Hemiptera, Cimicidae): Overview of Classification, Evolution and Dispersion.

Int J Environ Res Public Health

Parasitology-Mycology Department, Avicenne Hospital, AP-HP, Sorbonne Paris Nord University, 93000 Bobigny, France.

Published: June 2020

The bed bugs ( and ) have undergone a significant resurgence worldwide since the 1990s. A compilation of findings from a database, including 2650 scientific publications from seven major medical databases, allowed us to document main evolutionary events, from fossil evidence, dating from 11,000 years ago, until the present that has led to the current worldwide expansion of species. We present the hypotheses on the possible dispersion pathways of bed bugs in light of the major historical and evolutionary events. A detailed classification of the Cimicidae family and finally, an illustrative map displaying the current distribution of known species in each geographical ecozone of Asia, Europe, Africa, the Americas, and Australia are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345932PMC
http://dx.doi.org/10.3390/ijerph17124576DOI Listing

Publication Analysis

Top Keywords

bed bugs
12
evolutionary events
8
bugs hemiptera
4
hemiptera cimicidae
4
cimicidae overview
4
overview classification
4
classification evolution
4
evolution dispersion
4
dispersion bed
4
bugs undergone
4

Similar Publications

Common Bed Bugs: Non-Viable Hosts for Parasites.

Cells

December 2024

Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

The hemoflagellate parasite is transmitted by triatomine kissing bugs and may co-infect humans together with its Chagas disease-causing congener . Using real-time quantitative polymerase chain reaction (RT-qPCR) and antimicrobial assays, we studied () the temporal and spatial distribution of in common bed bugs, , following oral ingestion and hemocoelic injection of and () the immune responses of bed bugs induced by infections. Irrespective of infection mode, no live were present in the bed bugs' hemolymph, salivary glands, or feces.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF
Article Synopsis
  • Neonicotinoid pesticides, widely used around the world, are neurotoxic and are found in various environments, including food and water sources.
  • An analysis of U.S. EPA data reported 842 non-occupational poisoning incidents linked to these pesticides from 2018 to 2022, with significant cases resulting in major illnesses and fatalities primarily associated with specific products.
  • The study calls for the EPA to utilize its authority to revoke unsafe pesticide uses, emphasizing the importance of preventing neurotoxicity linked to these substances.
View Article and Find Full Text PDF

Over the last two decades, an increase in bed bug infestations has been observed worldwide. Although their definitive role as vectors of infectious agents has not yet been demonstrated, bed bugs have a direct effect on human health through dermatological reactions to their bites and psychological disorders linked to domestic infestations. In this study, the effectiveness of using MALDI-TOF MS to correctly identify these two bed bug species at immature stages was assessed, as well as it effectiveness as discriminating between the immature stages (IS) of C.

View Article and Find Full Text PDF

Background: Isoxazolines inhibit γ-aminobutyric acid chloride channels in insects and acarids by binding to postsynaptic receptors. This prevents chloride influx, leading to depolarization/hyperexcitation, paralysis, and death. Here, we evaluated the potential utility of a novel isoxazoline, isocycloseram, against several urban insect pests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!