Antibiotic resistance is an ecosystem problem threatening the interrelated human-animalenvironmenthealth under the "One Health" framework. Resistant bacteria arising in onegeographical area can spread via cross-reservoir transmission to other areas worldwide either bydirect exposure or through the food chain and the environment. Drivers of antibiotic resistance arecomplex and multi-sectoral particularly in Lower- and Middle-income countries. These includeinappropriate socio-ecological behaviors; poverty; overcrowding; lack of surveillance systems; foodsupply chain safety issues; highly contaminated waste effluents; and loose rules and regulations. Inorder to examine the drivers of antibiotic resistance from a "one health" perspective, a literaturereview was conducted on three databases including PubMed, Medline and Google Scholar. A totalof 485 studies of potential relevance were selected, out of which 182 were included in this review.Results have shown that the aforementioned market failures are the leading cause for the negativeexternality of antibiotic resistance that extends in scope from the individual to the global ecosystem.Incremental and sustainable global actions can make the change, however, the problem willcontinue to prevail if governments do not prioritize the "One health" approach and if individual'saccountability is still denied in a world struggling with profound socio-economic problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400606 | PMC |
http://dx.doi.org/10.3390/antibiotics9070372 | DOI Listing |
PLoS One
January 2025
Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Pharmacotherapy Department, Washington State University College of Pharmacy and Pharmaceutical Sciences, Spokane, WA, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFDrugs
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany.
The rise of antimicrobial resistance represents a significant global health threat, driven by the diminishing efficacy of existing antibiotics, a lack of novel antibacterials entering the market, and an over- or misuse of existing antibiotics, which accelerates the evolution of resistant bacterial strains. This review focuses on innovative therapies by highlighting 19 novel antibacterials in clinical development as of June 2024. These selected compounds are characterized by new chemical scaffolds, novel molecular targets, and/or unique mechanisms of action, which render their potential to break antimicrobial resistance particularly high.
View Article and Find Full Text PDFPaediatr Drugs
January 2025
Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
Despite significant global reductions in cases of pneumonia during the last 3 decades, pneumonia remains the leading cause of post-neonatal mortality in children aged <5 years. Beyond the immediate disease burden it imposes, pneumonia contributes to long-term morbidity, including lung function deficits and bronchiectasis. Viruses are the most common cause of childhood pneumonia, but bacteria also play a crucial role.
View Article and Find Full Text PDFActa Microbiol Immunol Hung
January 2025
1Department of Biomedical Sciences, Faculty of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece.
The spread of NDM-1-harboring Klebsiella pneumoniae is a worldwide concern. In this study the whole-genome sequence (WGS) of a carbapenem- and colistin-resistant K. pneumoniae 838Gr strain is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!