A Comprehensive Review on the Synthesis and Versatile Applications of Biologically Active Pyridone-Based Disperse Dyes.

Int J Environ Res Public Health

Dyeing, Printing and Textile Auxiliaries Department, Textile Industries Research Division, National Research Centre, Cairo 12622, Egypt.

Published: June 2020

This review summarizes our contributions during last decade on the synthesis of arylazopyridones that may be used as disperse dyes for hydrophobic fabrics utilizing an environmentally benign high temperature dyeing method. The review also discusses the advantages of select disperse dyes based on pyridone moieties as antioxidant, antimicrobial and anticancer agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370197PMC
http://dx.doi.org/10.3390/ijerph17134714DOI Listing

Publication Analysis

Top Keywords

disperse dyes
12
comprehensive review
4
review synthesis
4
synthesis versatile
4
versatile applications
4
applications biologically
4
biologically active
4
active pyridone-based
4
pyridone-based disperse
4
dyes review
4

Similar Publications

This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping.

View Article and Find Full Text PDF

The limited water solubility of active compounds remains a significant challenge for efficient dermal drug delivery, particularly for BCS class IV drugs such as curcumin. This study aimed to enhance curcumin's dermal penetration using two strategies: extracellular vesicles (EVs) and plantCrystals derived from soybeans. EVs were isolated using classical methods.

View Article and Find Full Text PDF

In this work, Terminalia chebula leaf extract was used to synthesize CuO-CoO nanoparticles, which were then embedded in a rice straw biochar. This new biochar-based nano-catalyst is used to photocatalytically degrade a variety of dyes (Eosin Y, Trypan Blue, Crystal Violet, Methylene Blue, Brilliant Green), as well as a binary mixture of Eosin Y and Trypan Blue dyes. It is also used for the catalytic reduction of nitro compounds (4-NP, 3-NP, and Picric acid).

View Article and Find Full Text PDF

Aqueous-phase phosphors are of utmost importance for a myriad of applications. However, the emission wavelengths of the current aqueous organic room-temperature phosphorescent (RTP) materials are limited to green and red bands, while the blue part is rarely reported, thus limiting the development of a full-color RTP system. Theoretically, carboxylated benzene is expected to be blue phosphorescence-emissive, but only green phosphorescence is observed in solid, due to the strong intermolecular π-π stacking that decreases the energy gap.

View Article and Find Full Text PDF

The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!