A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Chronic Sildenafil Treatment Improves Vasomotor Function in a Mouse Model of Accelerated Aging. | LitMetric

Aging leads to a loss of vasomotor control. Both vasodilation and vasoconstriction are affected. Decreased nitric oxide-cGMP-mediated relaxation is a hallmark of aging. It contributes to vascular disease, notably hypertension, infarction, and dementia. Decreased vasodilation can be caused by aging independently from cardiovascular risk factors. This process that can be mimicked in mice in an accelerated way by activation of the DNA damage response. Genetic deletion of the DNA repair enzyme ERCC1 endonuclease in mice, as in the case of mice, can be used as a tool to accelerate aging. mice develop age-dependent vasomotor dysfunction from two months after birth. In the present study we tested if chronic treatment with sildenafil, a phosphodiesterase 5 inhibitor that augments NO-cGMP signaling, can reduce the development of vasomotor dysfunction in mice. mice and wild-type littermates were treated with 10 mg/kg/d of sildenafil from the age of 6 to the age of 14 weeks. Blood pressure and in vivo and ex vivo vasomotor responses were measured at the end of the treatment period. mice developed decreased reactive hyperemia, and diminished NO-cGMP-dependent acetylcholine responses. The diminished acetylcholine response involved both endothelial and vascular smooth muscle cell signaling. Chronic sildenafil exclusively improved NO-cGMP signaling in VSMC, and had no effect on endothelium-derived hyperpolarization. Sildenafil also improved KCl hypocontractility in mice. All effects were blood pressure-independent. The findings might be of clinical importance for prevention of morbidities related to vascular aging as well as for progeria patients with a high risk of cardiovascular disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7369923PMC
http://dx.doi.org/10.3390/ijms21134667DOI Listing

Publication Analysis

Top Keywords

chronic sildenafil
8
mice
8
vasomotor dysfunction
8
no-cgmp signaling
8
aging
6
vasomotor
5
sildenafil treatment
4
treatment improves
4
improves vasomotor
4
vasomotor function
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!