Ultrasound stimulation (US) is reported to be a safe and useful technology for improving injured nerve regeneration. However, the intracellular mechanisms underlying its stimulatory effects are only partially understood. Mammalian target of rapamycin (mTOR) signaling is involved in neuronal survival and axonal outgrowth. In this study, we investigated the effect of US on regeneration of injured dorsal root ganglion (DRG) neurons and activation of the mTOR pathway. We showed that US significantly increased neurite regeneration and enhanced mTOR activation. Moreover, the expression of growth-associated protein-43 (GAP-43), a crucial factor for axonal outgrowth and regeneration in neurons, was significantly increased by US. These data suggest that US-induced neurite regeneration is mediated by upregulation of mTOR activity, which promotes the regeneration of injured DRG neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407506 | PMC |
http://dx.doi.org/10.3390/brainsci10070409 | DOI Listing |
G3 (Bethesda)
January 2025
Department of Neurobiology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Orthopedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 824, Taiwan.
Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.
View Article and Find Full Text PDFInvestig Clin Urol
January 2025
National Research Center for Sexual Medicine and Department of Urology, Inha University College of Medicine, Incheon, Korea.
Purpose: To investigate the therapeutic potential of eliminating insulin-like growth factor-binding protein 5 (IGFBP5) expression in improving erectile function in mice with cavernous nerve injury (CNI)-induced erectile dysfunction (ED).
Materials And Methods: Eight-week-old male C57BL/6 mice were divided into four groups: a sham-operated group and three CNI-induced ED groups. The CNI-induced ED groups were treated with intracavernous injections 3 days before the CNI procedure.
Mater Today Bio
February 2025
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Neurological Surgery, The University of Washington, Seattle, WA 98109, USA.
Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!