We recently developed a test based on the Agilent SureSelect target enrichment system capturing genomic fragments from 191 human papillomaviruses (HPV) types for Illumina sequencing. This enriched whole genome sequencing (eWGS) assay provides an approach to identify all HPV types in a sample. Here we present a machine learning algorithm that calls HPV types based on the eWGS output. The algorithm based on the support vector machine (SVM) technique was trained on eWGS data from 122 control samples with known HPV types. The new algorithm demonstrated good performance in HPV type detection for designed samples with 25 or greater HPV plasmid copies per sample. We compared the results of HPV typing made by the new algorithm for 261 residual epidemiologic samples with the results of the typing delivered by the standard HPV Linear Array (LA). The agreement between methods (97.4%) was substantial (kappa= 0.783). However, the new algorithm identified additionally 428 instances of HPV types not detectable by the LA assay by design. Overall, we have demonstrated that the bioinformatics pipeline is an accurate tool for calling HPV types by analyzing data generated by eWGS processing of DNA fragments extracted from control and epidemiological samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412107PMC
http://dx.doi.org/10.3390/v12070710DOI Listing

Publication Analysis

Top Keywords

hpv types
24
hpv
10
bioinformatics pipeline
8
support vector
8
vector machine
8
types
6
algorithm
5
pipeline human
4
human papillomavirus
4
papillomavirus short
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!