To tackle the challenge of the data accuracy issues of low-cost sensors (LCSs), the objective of this work was to obtain robust correction equations to convert LCS signals into data comparable to that of research-grade instruments using side-by-side comparisons. Limited sets of seed LCS devices, after laboratory evaluations, can be installed strategically in areas of interest without official monitoring stations to enable reading adjustments of other uncalibrated LCS devices to enhance the data quality of sensor networks. The robustness of these equations for LCS devices (AS-LUNG with PMS3003 sensor) under a hood and a chamber with two different burnt materials and before and after 1.5 years of field campaigns were evaluated. Correction equations with incense or mosquito coils burning inside a chamber with segmented regressions had a high R of 0.999, less than 6.0% variability in the slopes, and a mean RMSE of 1.18 µg/m for 0.1-200 µg/m of PM, with a slightly higher RMSE for 0.1-400 µg/m compared to EDM-180. Similar results were obtained for PM, with an upper limit of 200 µg/m. Sensor signals drifted 19-24% after 1.5 years in the field. Practical recommendations are given to obtain equations for Federal-Equivalent-Method-comparable measurements considering variability and cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7374303PMC
http://dx.doi.org/10.3390/s20133661DOI Listing

Publication Analysis

Top Keywords

correction equations
12
lcs devices
12
laboratory evaluations
8
sensor networks
8
years field
8
equations
5
evaluations correction
4
equations multiple
4
multiple choices
4
choices seed
4

Similar Publications

The orbital-free density functional theory (OF-DFT) based method is a convenient tool to carry out electronic structure calculations scaling almost linearly with the number of electrons. However, the main impediment in the application of this method is the unavailability of the accurate form for the non-interacting kinetic energy functional in terms of electron density. The Pauli kinetic energy functional is the unknown part of the kinetic energy functional, and the corresponding Pauli potential appears in the governing Euler equation.

View Article and Find Full Text PDF

Corresponding-states framework for classical and quantum fluids-Beyond Feynman-Hibbs.

J Chem Phys

January 2025

Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, D-70569 Stuttgart, Germany.

Effective potential methods, obtained by applying a quantum correction to a classical pair potential, are widely used for describing the thermophysical properties of fluids with mild nuclear quantum effects. In case of strong nuclear quantum effects, such as for liquid hydrogen and helium, the accuracy of these quantum corrections deteriorates significantly, but at present no simple alternatives are available. In this work, we solve this issue by developing a new, three-parameter corresponding-states principle that remains applicable in the regions of the phase diagram where quantum effects become significant.

View Article and Find Full Text PDF

Introduction: Stroke-associated pneumonia (SAP) is a major cause of mortality during the acute phase of stroke. The ADS score is widely used to predict SAP risk but does not include 24-h non-contrast computed tomography-Alberta Stroke Program Early CT Score (NCCT-ASPECTS) or red cell distribution width (RDW). We aim to evaluate the added prognostic value of incorporating 24-h NCCT-ASPECTS and RDW into the ADS score and to develop a novel prediction model for SAP following thrombolysis.

View Article and Find Full Text PDF

High-level multireference configuration interaction plus Davidson correction (MRCI + Q) calculation method was employed to determine the potential energy curves (PECs) of 10 Λ-S states, which come from the first and second dissociation channels of the SbP molecule, as well as 34 Ω states considering the spin-orbit coupling (SOC) effect. By solving the Schrödinger equation for nuclear motion, spectroscopic constants for the ground state XΣ and low-lying excited states were obtained and compared with experimental data. The excellent agreement indicates the reliability of our calculations.

View Article and Find Full Text PDF

Introduction: Infants born very preterm (VPT, <32 weeks' gestation) are at increased risk for neurodevelopmental impairments including motor, cognitive and behavioural delay. Parents of infants born VPT also have poorer mental health outcomes compared with parents of infants born at term.We have developed an intervention programme called TEDI-Prem (Telehealth for Early Developmental Intervention in babies born very preterm) based on previous research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!