A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hydrogel Glucose Sensor with In Vivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring. | LitMetric

Hydrogel Glucose Sensor with In Vivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring.

iScience

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan; Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan. Electronic address:

Published: June 2020

Hydrogel glucose sensors with boronic acid-based fluorescence intensity theoretically hold promise to improve in vivo continuous glucose monitoring (CGM) by facilitating long-lasting accuracy. However, these sensors generally degrade after implantation and the fluorescence intensity decreases immediately over time. Herein, we describe a hydrogel glucose sensor with in vivo stability based on boronic acid-based fluorescence intensity, integrating two antioxidant enzymes, superoxide dismutase (SOD), and catalase. These protected the arylboronic acid from being degraded by hydrogen peroxide in vitro and preserved the boronic acid-based fluorescence intensity of the hydrogel glucose sensors in rats for 28 days. These antioxidant enzymes also allowed the hydrogel glucose sensor attached to a homemade semi-implantable CGM device to trace blood glucose concentrations in rats for 5 h with the accuracy required for clinical settings. Hydrogel glucose sensors with boronic acid-based fluorescence intensity containing SOD and catalase could comprise a new strategy for in vivo CGM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7306611PMC
http://dx.doi.org/10.1016/j.isci.2020.101243DOI Listing

Publication Analysis

Top Keywords

hydrogel glucose
24
fluorescence intensity
24
boronic acid-based
16
acid-based fluorescence
16
glucose sensor
12
antioxidant enzymes
12
glucose sensors
12
sensor in vivo
8
glucose
8
continuous glucose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!