Flexible smart electronics require their energy storage device to be flexible in nature. Developing high-performance flexible energy storage devices require direct integration of electrode active materials on current collectors to satisfy the high electronic/ionic conductivity and long-term durability requirements. Herein, we develop a flexible all-solid-state asymmetric supercapacitor comprised of reduced graphene oxide (rGO) and core/shell tungsten trioxide/tungsten disulfide (WO/WS) nanowire based electrodes. The electrodes synthesized via electrochemical deposition and chemical vapor deposition avoided the necessity to use non-conductive binders and offered excellent cyclic stability. The structural integrity provided by the rGO and WO/WS electrodes facilitated excellent electrochemical stability with capacitance retention of 90% and 100% after 10 000 charge-discharge cycles, respectively. An all-solid-state device provides a voltage window of 1.5 V and more than 70% capacitance retention after 10 000 charge-discharge cycles. Providing 97% capacitance retention upon mechanical bending reveals its potential to be used as an energy storage devices in flexible electronics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/aba305 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!