Developing a multi-functional radiosensitizer with high efficiency and low toxicity remains challenging. Herein, we report a mesoporous heterostructure radiosensitizer (UCNP@NBOF-FePc-PFA) containing Lu-based upconversion nanophosphor (UCNP) and Bi-based nanomaterial loaded with iron phthalocyanine for X-ray and NIR light dual-triggered tri-modal tumor therapy. NaLuF:Yb,Tm, a Lu-based UCNP, offers radiosensitization and upconversion luminescence for optical bio-imaging. However, Bi has a higher X-ray mass attenuation coefficient than Lu. Thus, after stepwise fabrication, NaBiOF:Yb (NBOF) was assembled with the UCNP to form a mesoporous heterostructure composite. This enhanced the radiosensitization effect and drug load to realize multi-modal tumor therapy. After coating it with folate-conjugated amphiphilic PEG (PFA), UCNP@NBOF-FePc-PFA realized tumor photothermal/photodynamic/radio-therapy. The structure of UCNP@NBOF-FePc-PFA was well characterized. Different properties triggered by X-ray and NIR light were evaluated. Finally, a highly efficient tumor ablation effect was demonstrated in vitro and in vivo. Consequently, this kind of nanocomposite provides a unique strategy for designing a theranostic platform for oncotherapy. STATEMENT OF SIGNIFICANCE: The synergy of enhanced radiotherapy and photothermal/photodynamic therapy is found to improve tumor therapeutic efficacy. On that basis, a heterostructure nanohybrid containing Lu-based UCNP and Bi-based mesoporous material is synthesized. The heterostructure nanohybrid can be loaded with FePc and decorated with folate-modified amphiphilic PEG to form a multi-functional theranostic nano-platform. The platform exhibits upconversion luminescence capacity, X-ray attenuation property, photothermal effect, and X-ray and NIR dual-light triggered ROS generation capability. These features can not only enable upconversion luminescence/CT bioimaging of living beings but also be applied to the photothermal/photodynamic/radio- synergistic tumor ablation. To sum up, the nanomaterial offers a novel method for the construction of a new theranostic platform.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.06.044DOI Listing

Publication Analysis

Top Keywords

x-ray nir
16
nir light
12
tumor ablation
12
light dual-triggered
8
highly efficient
8
efficient tumor
8
mesoporous heterostructure
8
ucnp bi-based
8
tumor therapy
8
lu-based ucnp
8

Similar Publications

The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer.

J Am Chem Soc

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.

Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.

View Article and Find Full Text PDF

The development of efficient platforms for the evaluation of anti-angiogenic agents is critical in advancing cancer therapeutics. In this study, we exploited an ultrabright semiconducting polymer dots (Pdots) integrating with a three-dimensional (3D) near-infrared-II (NIR-II) fluorescence imaging system designed to assess the efficacy of potent anti-angiogenic agents PX-478 and BPR0C261 in an oral squamous cell carcinoma (OSCC) tumour model, which depends on angiogenesis for dissemination. PX-478, a hypoxia-inducible factor-1α (HIF-1α) inhibitor, and BPR0C261, a microtubule-disrupting agent, were administrated into tumour-bearing mice established using murine MTCQ1 tongue cancer cells through intraperitoneal injection and oral gavage, respectively.

View Article and Find Full Text PDF

Research on multifunctional luminous materials has garnered a lot of interest in the fields of optical sensing, biological imaging, white light-emitting diodes illumination, etc. A novel multifunctional phosphor of Pr-doped BiMoO (BMO: Pr), created via the solid-state method, was investigated in this work. X-ray diffraction, scanning electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectra, and fluorescence decay curves were employed to analyze the produced phosphors.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo.

Nat Commun

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore.

Strong background interference signals from normal tissues have significantly compromised the sensitive fluorescence imaging of early disease tissues with exogenous probes in vivo, particularly for sensitive fluorescence imaging of early liver disease due to the liver's significant uptake and accumulation of exogenous nanoprobes, coupled with high tissue autofluorescence and deep tissue depth. As a proof-of-concept study, we herein report a near-infrared-II (NIR-II, 1.0-1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!