Rising temperature and its impact on receptivity to malaria transmission in Europe: A systematic review.

Travel Med Infect Dis

University of Zurich Centre for Travel Medicine, WHO Collaborating Centre for Travellers' Health, Department of Public and Global Health, MilMedBiol Competence Centre, Institute for Epidemiology, Biostatistics and Prevention, University of Zurich, Zurich, Switzerland. Electronic address:

Published: August 2021

Background: Malaria is one of the most life-threatening vector-borne diseases globally. Recent autochthonous cases registered in several European countries have raised awareness regarding the threat of malaria reintroduction to Europe. An increasing number of imported malaria cases today occur due to international travel and migrant flows from malaria-endemic countries. The cumulative factors of the presence of competent vectors, favourable climatic conditions and evidence of increasing temperatures might lead to the re-emergence of malaria in countries where the infection was previously eliminated.

Methods: We performed a systematic literature review following PRISMA guidelines. We searched for original articles focusing on rising temperature and the receptivity to malaria transmission in Europe. We evaluated the quality of the selected studies using a standardised tool.

Results: The search resulted in 1'999 articles of possible relevance and after screening we included 10 original research papers in the quantitative analysis for the systematic review. With further increasing temperatures studies predicted a northward spread of the occurrence of Anopheles mosquitoes and an extension of seasonality, enabling malaria transmission for annual periods up to 6 months in the years 2051-2080. Highest vector stability and receptivity were predicted in Southern and South-Eastern European areas. Anopheles atroparvus, the main potential malaria vector in Europe, might play an important role under changing conditions favouring malaria transmission.

Conclusion: The receptivity of Europe for malaria transmission will increase as a result of rising temperature unless socioeconomic factors remain favourable and appropriate public health measures are implemented. Our systematic review serves as an evidence base for future preventive measures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tmaid.2020.101815DOI Listing

Publication Analysis

Top Keywords

malaria transmission
16
rising temperature
12
systematic review
12
malaria
10
receptivity malaria
8
transmission europe
8
increasing temperatures
8
europe
5
temperature impact
4
receptivity
4

Similar Publications

Vector-borne diseases are caused by microbes transmitted to humans through vectors such as mosquitoes, ticks, flies, and other arthropods. Three vector-borne diseases, filariasis, leishmaniasis, and malaria, are significant parasitic diseases which are responsible for long-term morbidity and mortality affecting millions globally. These diseases exhibit several similarities in transmission, health impacts, and the challenges faced in their control and prevention.

View Article and Find Full Text PDF

Background: India is committed to malaria elimination by the year 2030. According to the classification of malaria endemicity, the National Capital Territory of Delhi falls under category 1, with an annual parasite incidence of <1, and was targeted for elimination by 2022. Among others, population movement across states is one of the key challenges for malaria control, as it can result in imported malaria, thus introducing local transmission in an area nearing elimination.

View Article and Find Full Text PDF

Background: The Highlands of Papua New Guinea are non-endemic for malaria compared to the rest of the country. This study aimed to explore the local transmission of malaria in the Highlands through a cross-sectional school survey coupled with reactive case detection.

Methods: Between July and November 2019, 5575 schoolchildren and 1048 household members were screened for malaria using Rapid Diagnostic Tests, subsequently validated by light microscopy.

View Article and Find Full Text PDF

Widespread release of translational repression across Plasmodium's host-to-vector transmission event.

PLoS Pathog

January 2025

Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America.

Malaria parasites must respond quickly to environmental changes, including during their transmission between mammalian and mosquito hosts. Therefore, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. While the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not.

View Article and Find Full Text PDF

Insecticide resistance mutations of Anopheles species in the Republic of Korea.

PLoS Negl Trop Dis

January 2025

Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.

The number of reported malaria cases transmitted by Anopheles mosquitoes in the Republic of Korea (ROK) increased from 420 in 2022 to 746 in 2023, a 77.6% increase. Eight Anopheles species are currently reported in the ROK, including six species belonging to the Anopheles Hyrcanus Group and one species each belonging to the Barbirostris Group and Lindesayi Group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!