In donor-acceptor dyads undergoing photoinduced electron transfer (PET), a direction or pathway for electron movement is usually dictated by the redox properties and the separation distance between the donor and acceptor subunits, while the effect of symmetry is less recognized. We have designed and synthesized two isomeric donor-acceptor assemblies in which electronic coupling between donor and acceptor is altered by the orbital symmetry control with the reorganization energy and charge transfer exothermicity being kept unchanged. Analysis of the optical absorption and luminescence spectra, supported by the DFT and TD-DFT calculations, showed that PET in these assemblies corresponds to the Marcus inverted region (MIR) and has larger rate for isomer with weaker electronic coupling. This surprising observation provides the first experimental evidence for theoretically predicted adiabatic suppression of PET in MIR, which unambiguously controlled solely by symmetry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839475 | PMC |
http://dx.doi.org/10.1002/chem.202002736 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.
"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics, State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China.
Ultrashort laser pulses are extensively used for efficient manipulation of interfacial spin injection in two-dimensional van der Waals (vdW) heterostructures. However, physical processes accompanying the photoinduced spin transfer dynamics on the all-semiconductor ferromagnetic vdW heterostructure remain largely unexplored. Here, we present a computational investigation of the femtosecond laser pulse induced purely electron-mediated spin transfer dynamics at a time scale of less than 50 fs in a vdW heterostructure.
View Article and Find Full Text PDFACS Nano
January 2025
School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.
The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.
ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.
View Article and Find Full Text PDFChem Sci
December 2024
Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain
Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!